These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 38419399)
1. Towards ultra-low-cost smartphone microscopy. Zhang H; Zhang W; Zuo Z; Yang J Microsc Res Tech; 2024 Jul; 87(7):1521-1533. PubMed ID: 38419399 [TBL] [Abstract][Full Text] [Related]
2. Design of a 3D printed smartphone microscopic system with enhanced imaging ability for biomedical applications. Rabha D; Sarmah A; Nath P J Microsc; 2019 Oct; 276(1):13-20. PubMed ID: 31498428 [TBL] [Abstract][Full Text] [Related]
3. Development of a low-cost robotized 3D-prototype for automated optical microscopy diagnosis: An open-source system. Dantas de Oliveira A; Rubio Maturana C; Zarzuela Serrat F; Carvalho BM; Sulleiro E; Prats C; Veiga A; Bosch M; Zulueta J; Abelló A; Sayrol E; Joseph-Munné J; López-Codina D PLoS One; 2024; 19(6):e0304085. PubMed ID: 38905190 [TBL] [Abstract][Full Text] [Related]
4. Portable, Automated and Deep-Learning-Enabled Microscopy for Smartphone-Tethered Optical Platform Towards Remote Homecare Diagnostics: A Review. Kim K; Lee WG Small Methods; 2023 Jan; 7(1):e2200979. PubMed ID: 36420919 [TBL] [Abstract][Full Text] [Related]
5. Multi-Contrast Imaging and Digital Refocusing on a Mobile Microscope with a Domed LED Array. Phillips ZF; D'Ambrosio MV; Tian L; Rulison JJ; Patel HS; Sadras N; Gande AV; Switz NA; Fletcher DA; Waller L PLoS One; 2015; 10(5):e0124938. PubMed ID: 25969980 [TBL] [Abstract][Full Text] [Related]
6. Development and characterization of portable smartphone-based imaging device. Banik S; Mahato KK; Antonini A; Mazumder N Microsc Res Tech; 2020 Nov; 83(11):1336-1344. PubMed ID: 32656935 [TBL] [Abstract][Full Text] [Related]
7. Open Source 3D-printed focussing mechanism for cellphone-based cellular microscopy. Jawale YK; Rapol U; Athale CA J Microsc; 2019 Feb; 273(2):105-114. PubMed ID: 30417401 [TBL] [Abstract][Full Text] [Related]
8. Fabrication of miniature elastomer lenses with programmable liquid mold for smartphone microscopy: curing polydimethylsiloxane with in situ curvature control. Karunakaran B; Tharion J; Dhawangale AR; Paul D; Mukherji S J Biomed Opt; 2018 Feb; 23(2):1-14. PubMed ID: 29453846 [TBL] [Abstract][Full Text] [Related]
9. 3D-printed smartphone-based point of care tool for fluorescence- and magnetophoresis-based cytometry. Knowlton S; Joshi A; Syrrist P; Coskun AF; Tasoglu S Lab Chip; 2017 Aug; 17(16):2839-2851. PubMed ID: 28726914 [TBL] [Abstract][Full Text] [Related]
10. Wide-field computational imaging of pathology slides using lens-free on-chip microscopy. Greenbaum A; Zhang Y; Feizi A; Chung PL; Luo W; Kandukuri SR; Ozcan A Sci Transl Med; 2014 Dec; 6(267):267ra175. PubMed ID: 25520396 [TBL] [Abstract][Full Text] [Related]
11. Smartphone adapter time trial analysis: A low-cost, time-efficient method to disseminate quality photomicrographs at the microscope. DaCunha M; Buntinx T; Hinds B J Cutan Pathol; 2022 Mar; 49(3):215-219. PubMed ID: 34427943 [TBL] [Abstract][Full Text] [Related]
12. Low-cost 3D-printed inverted microscope to detect Mycobacterium tuberculosis in a MODS culture. Salguedo M; Zarate G; Coronel J; Comina G; Gilman RH; Sheen P; Oberhelman R; Zimic M Tuberculosis (Edinb); 2022 Jan; 132():102158. PubMed ID: 34864388 [TBL] [Abstract][Full Text] [Related]
13. Development of 3D Printed Smartphone-Based Multi-Purpose Fundus Camera (MultiScope) for Retinopathy of Prematurity. Pugalendhi A; Ranganathan R Ann Biomed Eng; 2021 Dec; 49(12):3323-3338. PubMed ID: 34773157 [TBL] [Abstract][Full Text] [Related]
14. Effectiveness and cost-effectiveness of four different strategies for SARS-CoV-2 surveillance in the general population (CoV-Surv Study): a structured summary of a study protocol for a cluster-randomised, two-factorial controlled trial. Deckert A; Anders S; de Allegri M; Nguyen HT; Souares A; McMahon S; Boerner K; Meurer M; Herbst K; Sand M; Koeppel L; Siems T; Brugnara L; Brenner S; Burk R; Lou D; Kirrmaier D; Duan Y; Ovchinnikova S; Marx M; Kräusslich HG; Knop M; Bärnighausen T; Denkinger C Trials; 2021 Jan; 22(1):39. PubMed ID: 33419461 [TBL] [Abstract][Full Text] [Related]
15. Development of 3D-printed universal adapter in enhancing retinal imaging accessibility. Latip AAA; Kipli K; Kamaruddin AMNA; Sapawi R; Lias K; Jalil MA; Tamrin KF; Tajudin NMA; Ong HY; Mahmood MH; Jali SK; Sahari SK; Mat DAA; Lim LT 3D Print Med; 2024 Jul; 10(1):23. PubMed ID: 39028380 [TBL] [Abstract][Full Text] [Related]
16. Using machine-learning to optimize phase contrast in a low-cost cellphone microscope. Diederich B; Wartmann R; Schadwinkel H; Heintzmann R PLoS One; 2018; 13(3):e0192937. PubMed ID: 29494620 [TBL] [Abstract][Full Text] [Related]
17. Development of a Whole Slide Imaging System on Smartphones and Evaluation With Frozen Section Samples. Yu H; Gao F; Jiang L; Ma S JMIR Mhealth Uhealth; 2017 Sep; 5(9):e132. PubMed ID: 28916508 [TBL] [Abstract][Full Text] [Related]
18. Pocket MUSE: an affordable, versatile and high-performance fluorescence microscope using a smartphone. Liu Y; Rollins AM; Levenson RM; Fereidouni F; Jenkins MW Commun Biol; 2021 Mar; 4(1):334. PubMed ID: 33712728 [TBL] [Abstract][Full Text] [Related]
19. Novel device for male infertility screening with single-ball lens microscope and smartphone. Kobori Y; Pfanner P; Prins GS; Niederberger C Fertil Steril; 2016 Sep; 106(3):574-8. PubMed ID: 27336208 [TBL] [Abstract][Full Text] [Related]
20. Kankanet: An artificial neural network-based object detection smartphone application and mobile microscope as a point-of-care diagnostic aid for soil-transmitted helminthiases. Yang A; Bakhtari N; Langdon-Embry L; Redwood E; Grandjean Lapierre S; Rakotomanga P; Rafalimanantsoa A; De Dios Santos J; Vigan-Womas I; Knoblauch AM; Marcos LA PLoS Negl Trop Dis; 2019 Aug; 13(8):e0007577. PubMed ID: 31381573 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]