These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 38419753)

  • 1. Application of transfer learning for rapid calibration of spatially resolved diffuse reflectance probes for extraction of tissue optical properties.
    Hannan MN; Baran TM
    J Biomed Opt; 2024 Feb; 29(2):027004. PubMed ID: 38419753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of Transfer Learning for Rapid Calibration of Spatially-resolved Diffuse Reflectance Probes for Extraction of Tissue Optical Properties.
    Hannan MN; Baran TM
    bioRxiv; 2023 Nov; ():. PubMed ID: 37961112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designing a use-error robust machine learning model for quantitative analysis of diffuse reflectance spectra.
    Scarbrough A; Chen K; Yu B
    J Biomed Opt; 2024 Jan; 29(1):015001. PubMed ID: 38213471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of a fiberoptic-based system for measurement of optical properties in highly attenuating turbid media.
    Sharma D; Agrawal A; Matchette LS; Pfefer TJ
    Biomed Eng Online; 2006 Aug; 5():49. PubMed ID: 16928274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitoring of tissue optical properties during thermal coagulation of ex vivo tissues.
    Nagarajan VK; Yu B
    Lasers Surg Med; 2016 Sep; 48(7):686-94. PubMed ID: 27250022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical property recovery with spatially-resolved diffuse reflectance at short source-detector separations using a compact fiber-optic probe.
    Bridger KG; Roccabruna JR; Baran TM
    Biomed Opt Express; 2021 Dec; 12(12):7388-7404. PubMed ID: 35003841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fiber-optic probe design and optical property recovery algorithm for optical biopsy of brain tissue.
    Cappon DJ; Farrell TJ; Fang Q; Hayward JE
    J Biomed Opt; 2013 Oct; 18(10):107004. PubMed ID: 24121732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artificial neural networks for retrieving absorption and reduced scattering spectra from frequency-domain diffuse reflectance spectroscopy at short source-detector separation.
    Chen YW; Chen CC; Huang PJ; Tseng SH
    Biomed Opt Express; 2016 Apr; 7(4):1496-510. PubMed ID: 27446671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of reduced scattering coefficient of biological tissue from a needle-like probe.
    Johns M; Giller C; German D; Liu H
    Opt Express; 2005 Jun; 13(13):4828-42. PubMed ID: 19498468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An integrated fiber-optic probe combined with support vector regression for fast estimation of optical properties of turbid media.
    Zhou Y; Fu X; Ying Y; Fang Z
    Anal Chim Acta; 2015 Jun; 880():122-9. PubMed ID: 26092344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of optical properties by interstitial white light spectroscopy using a custom fiber optic probe.
    Baran TM; Fenn MC; Foster TH
    J Biomed Opt; 2013 Oct; 18(10):107007. PubMed ID: 24150093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of relative error in perturbation Monte Carlo simulations of radiative transport.
    Parsanasab M; Hayakawa C; Spanier J; Shen Y; Venugopalan V
    J Biomed Opt; 2023 Jun; 28(6):065001. PubMed ID: 37293394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Study on the Determination System of Tissue Optical Properties Based on Diffuse Reflectance Spectrum].
    Li CX; Sun Z; Han L; Zhao HJ; Xu KX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 May; 36(5):1532-6. PubMed ID: 30001058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient construction of robust artificial neural networks for accurate determination of superficial sample optical properties.
    Chen YW; Tseng SH
    Biomed Opt Express; 2015 Mar; 6(3):747-60. PubMed ID: 25798300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of fiber optic probe geometry on the applicability of inverse models of tissue reflectance spectroscopy: computational models and experimental measurements.
    Sun J; Fu K; Wang A; Lin AW; Utzinger U; Drezek R
    Appl Opt; 2006 Nov; 45(31):8152-62. PubMed ID: 17068558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of multiple artificial neural networks for the determination of the optical properties of turbid media.
    Jäger M; Foschum F; Kienle A
    J Biomed Opt; 2013 May; 18(5):57005. PubMed ID: 23680997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diffuse reflectance spectroscopy with a self-calibrating fiber optic probe.
    Yu B; Fu H; Bydlon T; Bender JE; Ramanujam N
    Opt Lett; 2008 Aug; 33(16):1783-5. PubMed ID: 18709086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First in human measurements of abscess cavity optical properties and methylene blue uptake prior to photodynamic therapy by
    Hannan MN; Sharma AK; Baran TM
    J Biomed Opt; 2024 Feb; 29(2):027002. PubMed ID: 38414658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sampling depth of a diffuse reflectance spectroscopy probe for in-vivo physiological quantification of murine subcutaneous tumor allografts.
    Greening G; Mundo A; Rajaram N; Muldoon TJ
    J Biomed Opt; 2018 Aug; 23(8):1-14. PubMed ID: 30152204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine learning for direct oxygen saturation and hemoglobin concentration assessment using diffuse reflectance spectroscopy.
    Fredriksson I; Larsson M; Strömberg T
    J Biomed Opt; 2020 Nov; 25(11):. PubMed ID: 33205635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.