These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 38419755)
1. Retrieval of chromophore concentration changes in a digital human head model using analytical mean partial pathlengths of photons. Vera DA; García HA; Carbone NA; Waks-Serra MV; Iriarte DI; Pomarico JA J Biomed Opt; 2024 Feb; 29(2):025004. PubMed ID: 38419755 [TBL] [Abstract][Full Text] [Related]
2. Theoretical investigation of photon partial pathlengths in multilayered turbid media. García HA; Vera DA; Waks Serra MV; Baez GR; Iriarte DI; Pomarico JA Biomed Opt Express; 2022 Apr; 13(4):2516-2529. PubMed ID: 35519258 [TBL] [Abstract][Full Text] [Related]
3. Reconstruction of light absorption changes in the human head using analytically computed photon partial pathlengths in layered media. Vera DA; García HA; Waks-Serra MV; Carbone NA; Iriarte DI; Pomarico JA J Opt Soc Am A Opt Image Sci Vis; 2023 Apr; 40(4):C126-C137. PubMed ID: 37132982 [TBL] [Abstract][Full Text] [Related]
4. Quantifying tissue optical properties of human heads in vivo using continuous-wave near-infrared spectroscopy and subject-specific three-dimensional Monte Carlo models. Kao TC; Sung KB J Biomed Opt; 2022 Jun; 27(8):. PubMed ID: 35733242 [TBL] [Abstract][Full Text] [Related]
5. Graphics processing units-accelerated adaptive nonlocal means filter for denoising three-dimensional Monte Carlo photon transport simulations. Yuan Y; Yu L; Doğan Z; Fang Q J Biomed Opt; 2018 Nov; 23(12):1-9. PubMed ID: 30499265 [TBL] [Abstract][Full Text] [Related]
6. scatterBrains: an open database of human head models and companion optode locations for realistic Monte Carlo photon simulations. Wu MM; Horstmeyer R; Carp SA J Biomed Opt; 2023 Oct; 28(10):100501. PubMed ID: 37811478 [TBL] [Abstract][Full Text] [Related]
7. Analysis of estimation of optical properties of sub superficial structures in multi layered tissue model using distribution function method. Żołek N; Rix H; Botwicz M Comput Methods Programs Biomed; 2020 Jan; 183():105084. PubMed ID: 31580969 [TBL] [Abstract][Full Text] [Related]
8. Graphics-processing-unit-accelerated Monte Carlo simulation of polarized light in complex three-dimensional media. Yan S; Jacques SL; Ramella-Roman JC; Fang Q J Biomed Opt; 2022 May; 27(8):. PubMed ID: 35534924 [TBL] [Abstract][Full Text] [Related]
9. Accelerating Monte Carlo simulation of light propagation in tissue mimicking turbid medium based on generative adversarial networks. Wang S; Chen J; Zhang F; Zhao M; Cui X; Chen S Med Phys; 2022 Feb; 49(2):1209-1215. PubMed ID: 34788482 [TBL] [Abstract][Full Text] [Related]
10. Framework for denoising Monte Carlo photon transport simulations using deep learning. Ardakani MR; Yu L; Kaeli D; Fang Q J Biomed Opt; 2022 May; 27(8):. PubMed ID: 35614533 [TBL] [Abstract][Full Text] [Related]
11. A comparison between plausible models in layered turbid media with geometrical variations applying a Bayesian selection criterion. Vera DA; Baez GR; García HA; Iriarte DI; Pomarico JA Biomed Phys Eng Express; 2020 Sep; 6(5):055020. PubMed ID: 33444251 [TBL] [Abstract][Full Text] [Related]
12. A Monte Carlo study of near infrared light propagation in the human head with lesions-a time-resolved approach. Vera DA; García HA; Victoria Waks Serra M; Baez GR; Iriarte DI; Pomarico JA Biomed Phys Eng Express; 2022 Mar; 8(3):. PubMed ID: 35235912 [TBL] [Abstract][Full Text] [Related]
13. Depth sensitivity analysis of functional near-infrared spectroscopy measurement using three-dimensional Monte Carlo modelling-based magnetic resonance imaging. Mansouri C; L'huillier JP; Kashou NH; Humeau A Lasers Med Sci; 2010 May; 25(3):431-8. PubMed ID: 20143117 [TBL] [Abstract][Full Text] [Related]
14. Effects of Different Optical Properties of Head Tissues on Near-Infrared Spectroscopy Using Monte Carlo Simulations. Russomanno E; Kalyanov A; Jiang J; Ackermann M; Wolf M Adv Exp Med Biol; 2022; 1395():39-43. PubMed ID: 36527611 [TBL] [Abstract][Full Text] [Related]
15. Optical dosimetry probes to validate Monte Carlo and empirical-method-based NIR dose planning in the brain. Verleker AP; Shaffer M; Fang Q; Choi MR; Clare S; Stantz KM Appl Opt; 2016 Dec; 55(34):9875-9888. PubMed ID: 27958483 [TBL] [Abstract][Full Text] [Related]
16. ARCHERRT - a GPU-based and photon-electron coupled Monte Carlo dose computing engine for radiation therapy: software development and application to helical tomotherapy. Su L; Yang Y; Bednarz B; Sterpin E; Du X; Liu T; Ji W; Xu XG Med Phys; 2014 Jul; 41(7):071709. PubMed ID: 24989378 [TBL] [Abstract][Full Text] [Related]
17. Efficient computation of the steady-state and time-domain solutions of the photon diffusion equation in layered turbid media. Helton M; Zerafa S; Vishwanath K; Mycek MA Sci Rep; 2022 Nov; 12(1):18979. PubMed ID: 36347893 [TBL] [Abstract][Full Text] [Related]
18. Comparison of a layered slab and an atlas head model for Monte Carlo fitting of time-domain near-infrared spectroscopy data of the adult head. Selb J; Ogden TM; Dubb J; Fang Q; Boas DA J Biomed Opt; 2014 Jan; 19(1):16010. PubMed ID: 24407503 [TBL] [Abstract][Full Text] [Related]
19. Quantitative Comparison of Analytical Solution and Finite Element Method for Investigation of Near-infrared Light Propagation in Brain Tissue Model. Borjkhani H; Setarehdan SK Basic Clin Neurosci; 2023; 14(2):193-202. PubMed ID: 38107524 [TBL] [Abstract][Full Text] [Related]
20. XIORT-MC: A real-time MC-based dose computation tool for low- energy X-rays intraoperative radiation therapy. Ibáñez P; Villa-Abaunza A; Vidal M; Guerra P; Graullera S; Illana C; Udías JM Med Phys; 2021 Dec; 48(12):8089-8106. PubMed ID: 34658039 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]