These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38420310)

  • 1. Optimal calibration of optical tweezers with arbitrary integration time and sampling frequencies: a general framework [Invited].
    Pérez-García L; Selin M; Ciarlo A; Magazzù A; Pesce G; Sasso A; Volpe G; Pérez Castillo I; Arzola AV
    Biomed Opt Express; 2023 Dec; 14(12):6442-6469. PubMed ID: 38420310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative study of methods to calibrate the stiffness of a single-beam gradient-force optical tweezers over various laser trapping powers.
    Sarshar M; Wong WT; Anvari B
    J Biomed Opt; 2014; 19(11):115001. PubMed ID: 25375348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced Signal-to-Noise and Fast Calibration of Optical Tweezers Using Single Trapping Events.
    Stilgoe AB; Armstrong DJ; Rubinsztein-Dunlop H
    Micromachines (Basel); 2021 May; 12(5):. PubMed ID: 34067843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Video microscopy-based accurate optical force measurement by exploring a frequency-changing sinusoidal stimulus.
    Xu T; Wu S; Jiang Z; Wu X; Zhang Q
    Appl Opt; 2020 Mar; 59(8):2452-2456. PubMed ID: 32225781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous calibration of optical tweezers spring constant and position detector response.
    Le Gall A; Perronet K; Dulin D; Villing A; Bouyer P; Visscher K; Westbrook N
    Opt Express; 2010 Dec; 18(25):26469-74. PubMed ID: 21164997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relaxing constraints on data acquisition and position detection for trap stiffness calibration in optical tweezers.
    Melo B; Almeida F; Temporão G; Guerreiro T
    Opt Express; 2020 May; 28(11):16256-16269. PubMed ID: 32549451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finding trap stiffness of optical tweezers using digital filters.
    Almendarez-Rangel P; Morales-Cruzado B; Sarmiento-Gómez E; Pérez-Gutiérrez FG
    Appl Opt; 2018 Feb; 57(4):652-658. PubMed ID: 29400734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Note: Three-dimensional linearization of optical trap position detection for precise high speed diffusion measurements.
    Hsu YH; Pralle A
    Rev Sci Instrum; 2014 Jul; 85(7):076104. PubMed ID: 25085189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calibration of force detection for arbitrarily shaped particles in optical tweezers.
    Bui AAM; Kashchuk AV; Balanant MA; Nieminen TA; Rubinsztein-Dunlop H; Stilgoe AB
    Sci Rep; 2018 Jul; 8(1):10798. PubMed ID: 30018378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Escape forces and trajectories in optical tweezers and their effect on calibration.
    Bui AA; Stilgoe AB; Khatibzadeh N; Nieminen TA; Berns MW; Rubinsztein-Dunlop H
    Opt Express; 2015 Sep; 23(19):24317-30. PubMed ID: 26406637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calibration of dynamic holographic optical tweezers for force measurements on biomaterials.
    van der Horst A; Forde NR
    Opt Express; 2008 Dec; 16(25):20987-1003. PubMed ID: 19065239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of external forces on discrete motion within holographic optical tweezers.
    Eriksson E; Keen S; Leach J; Goksör M; Padgett MJ
    Opt Express; 2007 Dec; 15(26):18268-74. PubMed ID: 19551124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blinking Optical Tweezers for microrheology measurements of weak elasticity complex fluids.
    Pesce G; Rusciano G; Sasso A
    Opt Express; 2010 Feb; 18(3):2116-26. PubMed ID: 20174040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New Detector Sensitivity Calibration and the Calculation of the Interaction Force between Particles Using an Optical Tweezer.
    Yale P; Konin JE; Kouacou MA; Zoueu JT
    Micromachines (Basel); 2018 Aug; 9(9):. PubMed ID: 30424358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tweezepy: A Python package for calibrating forces in single-molecule video-tracking experiments.
    Morgan IL; Saleh OA
    PLoS One; 2021; 16(12):e0262028. PubMed ID: 34972160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calibration of nonspherical particles in optical tweezers using only position measurement.
    Bui AA; Stilgoe AB; Nieminen TA; Rubinsztein-Dunlop H
    Opt Lett; 2013 Apr; 38(8):1244-6. PubMed ID: 23595446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using optical tweezers for measuring the interaction forces between human bone cells and implant surfaces: System design and force calibration.
    Andersson M; Madgavkar A; Stjerndahl M; Wu Y; Tan W; Duran R; Niehren S; Mustafa K; Arvidson K; Wennerberg A
    Rev Sci Instrum; 2007 Jul; 78(7):074302. PubMed ID: 17672780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Power spectral analysis for optical trap stiffness calibration from high-speed camera position detection with limited bandwidth.
    van der Horst A; Forde NR
    Opt Express; 2010 Apr; 18(8):7670-7. PubMed ID: 20588607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-performance reconstruction of microscopic force fields from Brownian trajectories.
    Pérez García L; Donlucas Pérez J; Volpe G; V Arzola A; Volpe G
    Nat Commun; 2018 Dec; 9(1):5166. PubMed ID: 30514840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.