BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 38420613)

  • 21. Applications of Deep Learning: Automated Assessment of Vascular Tortuosity in Mouse Models of Oxygen-Induced Retinopathy.
    Chen JS; Marra KV; Robles-Holmes HK; Ly KB; Miller J; Wei G; Aguilar E; Bucher F; Ideguchi Y; Coyner AS; Ferrara N; Campbell JP; Friedlander M; Nudleman E
    Ophthalmol Sci; 2024; 4(1):100338. PubMed ID: 37869029
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development and Validation of a Deep Learning System to Detect Glaucomatous Optic Neuropathy Using Fundus Photographs.
    Liu H; Li L; Wormstone IM; Qiao C; Zhang C; Liu P; Li S; Wang H; Mou D; Pang R; Yang D; Zangwill LM; Moghimi S; Hou H; Bowd C; Jiang L; Chen Y; Hu M; Xu Y; Kang H; Ji X; Chang R; Tham C; Cheung C; Ting DSW; Wong TY; Wang Z; Weinreb RN; Xu M; Wang N
    JAMA Ophthalmol; 2019 Dec; 137(12):1353-1360. PubMed ID: 31513266
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Automatic Segmentation of Retinal Capillaries in Adaptive Optics Scanning Laser Ophthalmoscope Perfusion Images Using a Convolutional Neural Network.
    Musial G; Queener HM; Adhikari S; Mirhajianmoghadam H; Schill AW; Patel NB; Porter J
    Transl Vis Sci Technol; 2020 Jul; 9(2):43. PubMed ID: 32855847
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lesion-aware generative adversarial networks for color fundus image to fundus fluorescein angiography translation.
    Huang K; Li M; Yu J; Miao J; Hu Z; Yuan S; Chen Q
    Comput Methods Programs Biomed; 2023 Feb; 229():107306. PubMed ID: 36580822
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Association of Cardiovascular Mortality and Deep Learning-Funduscopic Atherosclerosis Score derived from Retinal Fundus Images.
    Chang J; Ko A; Park SM; Choi S; Kim K; Kim SM; Yun JM; Kang U; Shin IH; Shin JY; Ko T; Lee J; Oh BL; Park KH
    Am J Ophthalmol; 2020 Sep; 217():121-130. PubMed ID: 32222370
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fully-automated sarcopenia assessment in head and neck cancer: development and external validation of a deep learning pipeline.
    Ye Z; Saraf A; Ravipati Y; Hoebers F; Zha Y; Zapaishchykova A; Likitlersuang J; Tishler RB; Schoenfeld JD; Margalit DN; Haddad RI; Mak RH; Naser M; Wahid KA; Sahlsten J; Jaskari J; Kaski K; Mäkitie AA; Fuller CD; Aerts HJWL; Kann BH
    medRxiv; 2023 Mar; ():. PubMed ID: 36945519
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cardiovascular disease risk prediction using automated machine learning: A prospective study of 423,604 UK Biobank participants.
    Alaa AM; Bolton T; Di Angelantonio E; Rudd JHF; van der Schaar M
    PLoS One; 2019; 14(5):e0213653. PubMed ID: 31091238
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Automatic pulmonary vessel segmentation on noncontrast chest CT: deep learning algorithm developed using spatiotemporally matched virtual noncontrast images and low-keV contrast-enhanced vessel maps.
    Nam JG; Witanto JN; Park SJ; Yoo SJ; Goo JM; Yoon SH
    Eur Radiol; 2021 Dec; 31(12):9012-9021. PubMed ID: 34009411
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantification of Retinal Microvascular Density in Optical Coherence Tomographic Angiography Images in Diabetic Retinopathy.
    Durbin MK; An L; Shemonski ND; Soares M; Santos T; Lopes M; Neves C; Cunha-Vaz J
    JAMA Ophthalmol; 2017 Apr; 135(4):370-376. PubMed ID: 28301651
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development and Validation of Deep Learning Models for Screening Multiple Abnormal Findings in Retinal Fundus Images.
    Son J; Shin JY; Kim HD; Jung KH; Park KH; Park SJ
    Ophthalmology; 2020 Jan; 127(1):85-94. PubMed ID: 31281057
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Retinal flow density by optical coherence tomography angiography is useful for detection of nonperfused areas in diabetic retinopathy.
    Kaizu Y; Nakao S; Sekiryu H; Wada I; Yamaguchi M; Hisatomi T; Ikeda Y; Kishimoto J; Sonoda KH
    Graefes Arch Clin Exp Ophthalmol; 2018 Dec; 256(12):2275-2282. PubMed ID: 30191299
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development and validation of a deep-learning algorithm for the detection of neovascular age-related macular degeneration from colour fundus photographs.
    Keel S; Li Z; Scheetz J; Robman L; Phung J; Makeyeva G; Aung K; Liu C; Yan X; Meng W; Guymer R; Chang R; He M
    Clin Exp Ophthalmol; 2019 Nov; 47(8):1009-1018. PubMed ID: 31215760
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Deep Learning Approach for Automated Detection of Geographic Atrophy from Color Fundus Photographs.
    Keenan TD; Dharssi S; Peng Y; Chen Q; Agrón E; Wong WT; Lu Z; Chew EY
    Ophthalmology; 2019 Nov; 126(11):1533-1540. PubMed ID: 31358385
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Deep Learning-Based Cataract Detection and Grading from Slit-Lamp and Retro-Illumination Photographs: Model Development and Validation Study.
    Son KY; Ko J; Kim E; Lee SY; Kim MJ; Han J; Shin E; Chung TY; Lim DH
    Ophthalmol Sci; 2022 Jun; 2(2):100147. PubMed ID: 36249697
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development and validation of a deep-learning model to predict 10-year atherosclerotic cardiovascular disease risk from retinal images using the UK Biobank and EyePACS 10K datasets.
    Vaghefi E; Squirrell D; Yang S; An S; Xie L; Durbin MK; Hou H; Marshall J; Shreibati J; McConnell MV; Budoff M
    Cardiovasc Digit Health J; 2024 Apr; 5(2):59-69. PubMed ID: 38765618
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A deep learning-based model for automatic segmentation and evaluation of corneal neovascularization using slit-lamp anterior segment images.
    Chu X; Wang X; Zhang C; Liu H; Li F; Li G; Zhao S
    Quant Imaging Med Surg; 2023 Oct; 13(10):6778-6788. PubMed ID: 37869308
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Predicting sex from retinal fundus photographs using automated deep learning.
    Korot E; Pontikos N; Liu X; Wagner SK; Faes L; Huemer J; Balaskas K; Denniston AK; Khawaja A; Keane PA
    Sci Rep; 2021 May; 11(1):10286. PubMed ID: 33986429
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multimodal retinal vessel segmentation from spectral-domain optical coherence tomography and fundus photography.
    Hu Z; Niemeijer M; Abràmoff MD; Garvin MK
    IEEE Trans Med Imaging; 2012 Oct; 31(10):1900-11. PubMed ID: 22759443
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genome-wide Association Studies of Retinal Vessel Tortuosity Identify Numerous Novel Loci Revealing Genes and Pathways Associated With Ocular and Cardiometabolic Diseases.
    Tomasoni M; Beyeler MJ; Vela SO; Mounier N; Porcu E; Corre T; Krefl D; Button AL; Abouzeid H; Lazaros K; Bochud M; Schlingemann R; Bergin C; Bergmann S
    Ophthalmol Sci; 2023 Sep; 3(3):100288. PubMed ID: 37131961
    [TBL] [Abstract][Full Text] [Related]  

  • 40. ROSE: A Retinal OCT-Angiography Vessel Segmentation Dataset and New Model.
    Ma Y; Hao H; Xie J; Fu H; Zhang J; Yang J; Wang Z; Liu J; Zheng Y; Zhao Y
    IEEE Trans Med Imaging; 2021 Mar; 40(3):928-939. PubMed ID: 33284751
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.