These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 38420742)

  • 1. Chiral nanoparticle separation and discrimination using radially polarized circular Airy vortex beams with orbital-induced spin angular momentum.
    Wu H; Wang T; Hu Y
    Phys Chem Chem Phys; 2024 Mar; 26(11):8775-8783. PubMed ID: 38420742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and separation of chiral particles by focused circularly polarized vortex beams.
    Zhang Y; Li M; Yan S; Zhou Y; Gao W; Yao B
    J Opt Soc Am A Opt Image Sci Vis; 2022 Aug; 39(8):1371-1377. PubMed ID: 36215580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spin-orbit Hall effect in the tight focusing of a radially polarized vortex beam.
    Li H; Ma C; Wang J; Tang M; Li X
    Opt Express; 2021 Nov; 29(24):39419-39427. PubMed ID: 34809307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Orbit-induced localized spin angular momentum of vector circular Airy vortex beam in the paraxial regime.
    Geng T; Li M; Guo H
    Opt Express; 2021 Apr; 29(9):14069-14077. PubMed ID: 33985132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlling the polarization and vortex charge of attosecond high-harmonic beams via simultaneous spin-orbit momentum conservation.
    Dorney KM; Rego L; Brooks NJ; Román JS; Liao CT; Ellis JL; Zusin D; Gentry C; Nguyen QL; Shaw JM; Picón A; Plaja L; Kapteyn HC; Murnane MM; Hernández-García C
    Nat Photonics; 2018; 13(2):. PubMed ID: 33101455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical separation and discrimination of chiral particles by vector beams with orbital angular momentum.
    Li M; Yan S; Zhang Y; Chen X; Yao B
    Nanoscale Adv; 2021 Dec; 3(24):6897-6902. PubMed ID: 36132368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manipulation of optical orbit-induced localized spin angular momentum using the periodic edge dislocation.
    Liu F; Song J; Zhang N; Tong X; Sun M; Cao B; Huang K; Zhang X; Lu X
    Opt Express; 2024 Mar; 32(6):9867-9876. PubMed ID: 38571211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiation forces on a Rayleigh particle by highly focused partially coherent and radially polarized vortex beams.
    Shu J; Chen Z; Pu J
    J Opt Soc Am A Opt Image Sci Vis; 2013 May; 30(5):916-22. PubMed ID: 23695323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orbit-induced localized spin angular momentum in the tight focusing of linearly polarized vortex beams.
    Yu P; Zhao Q; Hu X; Li Y; Gong L
    Opt Lett; 2018 Nov; 43(22):5677-5680. PubMed ID: 30439926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Separating radial and azimuthal polarizations of circular Airy vortex beam via uniaxial crystal.
    Liu H; Yuan L
    Opt Express; 2023 Jul; 31(14):22507-22518. PubMed ID: 37475360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spinning and orbiting motion of particles in vortex beams with circular or radial polarizations.
    Li M; Yan S; Yao B; Liang Y; Zhang P
    Opt Express; 2016 Sep; 24(18):20604-12. PubMed ID: 27607664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controllable Microparticle Spinning via Light without Spin Angular Momentum.
    Wu YJ; Yu PP; Liu YF; Zhuang JH; Wang ZQ; Li YM; Qiu CW; Gong L
    Phys Rev Lett; 2024 Jun; 132(25):253803. PubMed ID: 38996228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution and particle trapping dynamics of circular Pearcey-Airy Gaussian vortex beams in tightly focused systems.
    Wei S; Tu J; Lu Z; Wang X; Li Z; Wang G; Deng D
    Opt Express; 2023 Aug; 31(17):27843-27857. PubMed ID: 37710851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spin-to-orbital angular momentum conversion in dielectric metasurfaces.
    Devlin RC; Ambrosio A; Wintz D; Oscurato SL; Zhu AY; Khorasaninejad M; Oh J; Maddalena P; Capasso F
    Opt Express; 2017 Jan; 25(1):377-393. PubMed ID: 28085832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structured spin angular momentum in highly focused cylindrical vector vortex beams for optical manipulation.
    Shi P; Du L; Yuan X
    Opt Express; 2018 Sep; 26(18):23449-23459. PubMed ID: 30184845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Terahertz circular Airy vortex beams.
    Liu C; Liu J; Niu L; Wei X; Wang K; Yang Z
    Sci Rep; 2017 Jun; 7(1):3891. PubMed ID: 28634341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interparticle-Interaction-Mediated Anomalous Acceleration of Nanoparticles under Light-Field with Coupled Orbital and Spin Angular Momentum.
    Tamura M; Omatsu T; Tokonami S; Iida T
    Nano Lett; 2019 Aug; 19(8):4873-4878. PubMed ID: 31272154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chiral Mechanical Effect of the Tightly Focused Chiral Vector Vortex Fields Interacting with Particles.
    Zhang Q; Liu Z; Cheng Z
    Nanomaterials (Basel); 2023 Aug; 13(15):. PubMed ID: 37570568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Symmetry of electric spin angular momentum density in the tight focusing of linearly polarized vortex beams.
    Hang L; Wang Y; Chen P
    J Opt Soc Am A Opt Image Sci Vis; 2019 Aug; 36(8):1374-1378. PubMed ID: 31503563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Azimuthal Imaginary Poynting Momentum Density.
    Xu X; Nieto-Vesperinas M
    Phys Rev Lett; 2019 Dec; 123(23):233902. PubMed ID: 31868432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.