These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38421219)

  • 21. Low-temperature fusion fabrication of Li-Cu alloy anode with in situ formed 3D framework of inert LiCu
    Jia W; Liu Y; Wang Z; Qing F; Li J; Wang Y; Xiao R; Zhou A; Li G; Yu X; Hu YS; Li H; Wang Z; Huang X; Chen L
    Sci Bull (Beijing); 2020 Nov; 65(22):1907-1915. PubMed ID: 36738056
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Vapor-Solid Reaction Growth of Rutile TiO
    Lee TY; Lee CY; Chiu HT
    ACS Omega; 2019 Oct; 4(14):16217-16225. PubMed ID: 31592488
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phase-controlled growth of metastable Fe5Si3 nanowires by a vapor transport method.
    Varadwaj KS; Seo K; In J; Mohanty P; Park J; Kim B
    J Am Chem Soc; 2007 Jul; 129(27):8594-9. PubMed ID: 17567133
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamic Intelligent Cu Current Collectors for Ultrastable Lithium Metal Anodes.
    Chen J; Zhao J; Lei L; Li P; Chen J; Zhang Y; Wang Y; Ma Y; Wang D
    Nano Lett; 2020 May; 20(5):3403-3410. PubMed ID: 32239948
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Insight into the Formation and Stability of Solid Electrolyte Interphase for Nanostructured Silicon-Based Anode Electrodes Used in Li-Ion Batteries.
    Ezzedine M; Zamfir MR; Jardali F; Leveau L; Caristan E; Ersen O; Cojocaru CS; Florea I
    ACS Appl Mater Interfaces; 2021 Jun; 13(21):24734-24746. PubMed ID: 34019366
    [TBL] [Abstract][Full Text] [Related]  

  • 27. New Nanoconfined Galvanic Replacement Synthesis of Hollow Sb@C Yolk-Shell Spheres Constituting a Stable Anode for High-Rate Li/Na-Ion Batteries.
    Liu J; Yu L; Wu C; Wen Y; Yin K; Chiang FK; Hu R; Liu J; Sun L; Gu L; Maier J; Yu Y; Zhu M
    Nano Lett; 2017 Mar; 17(3):2034-2042. PubMed ID: 28191960
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preparation of TiSi
    Xu J; Jin M; Shi X; Li Q; Gan C; Yao W
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578595
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metal-induced crystallization of highly corrugated silicon thick films as potential anodes for Li-ion batteries.
    Qu F; Li C; Wang Z; Strunk HP; Maier J
    ACS Appl Mater Interfaces; 2014 Jun; 6(11):8782-8. PubMed ID: 24797020
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Columnar Lithium Deposition Guided by Graphdiyne Nanowalls toward a Stable Lithium Metal Anode.
    Zhu M; Yin C; Wang Q; Zhang Y; Zhou H; Tong L; Zhang J; Qi L
    ACS Appl Mater Interfaces; 2022 Dec; 14(50):55700-55708. PubMed ID: 36509714
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In situ synthesis of C/Cu/ZnO porous hybrids as anode materials for lithium ion batteries.
    Wang Y; Jiang X; Yang L; Jia N; Ding Y
    ACS Appl Mater Interfaces; 2014 Feb; 6(3):1525-32. PubMed ID: 24417493
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Flexible Overoxidized Polypyrrole Films with Orderly Structure as High-Performance Anodes for Li- and Na-Ion Batteries.
    Yuan T; Ruan J; Zhang W; Tan Z; Yang J; Ma ZF; Zheng S
    ACS Appl Mater Interfaces; 2016 Dec; 8(51):35114-35122. PubMed ID: 27990797
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In Situ Alloying Strategy for Exceptional Potassium Ion Batteries.
    Wang J; Fan L; Liu Z; Chen S; Zhang Q; Wang L; Yang H; Yu X; Lu B
    ACS Nano; 2019 Mar; 13(3):3703-3713. PubMed ID: 30811177
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Solution-phase synthesis of single-crystal Cu3Si nanowire arrays on diverse substrates with dual functions as high-performance field emitters and efficient anti-reflective layers.
    Yuan FW; Wang CY; Li GA; Chang SH; Chu LW; Chen LJ; Tuan HY
    Nanoscale; 2013 Oct; 5(20):9875-81. PubMed ID: 23979254
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dendritic Copper Current Collectors as a Capacity Boosting Material for Polymer-Templated Si/Ge/C Anodes in Li-Ion Batteries.
    Weindl CL; Fajman CE; Xu Z; Zheng T; Möhl GE; Chaulagain N; Shankar K; Gilles R; Fässler TF; Müller-Buschbaum P
    ACS Appl Mater Interfaces; 2024 Jan; 16(2):2309-2318. PubMed ID: 38170673
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Self-supported SnO2 nanowire electrodes for high-power lithium-ion batteries.
    Ko YD; Kang JG; Park JG; Lee S; Kim DW
    Nanotechnology; 2009 Nov; 20(45):455701. PubMed ID: 19822930
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Using Mixed Salt Electrolytes to Stabilize Silicon Anodes for Lithium-Ion Batteries via in Situ Formation of Li-M-Si Ternaries (M = Mg, Zn, Al, Ca).
    Han B; Liao C; Dogan F; Trask SE; Lapidus SH; Vaughey JT; Key B
    ACS Appl Mater Interfaces; 2019 Aug; 11(33):29780-29790. PubMed ID: 31318201
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rational Design of WO
    Liu Y; Jiao Y; Zhou H; Yu X; Qu F; Wu X
    Nanomicro Lett; 2015; 7(1):12-16. PubMed ID: 30464951
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Yucca fern shaped CuO nanowires on Cu foam for remitting capacity fading of Li-ion battery anodes.
    Wang Z; Zhang Y; Xiong H; Qin C; Zhao W; Liu X
    Sci Rep; 2018 Apr; 8(1):6530. PubMed ID: 29695815
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.