BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 38421464)

  • 1. A Review of Rechargeable Zinc-Air Batteries: Recent Progress and Future Perspectives.
    Nazir G; Rehman A; Lee JH; Kim CH; Gautam J; Heo K; Hussain S; Ikram M; AlObaid AA; Lee SY; Park SJ
    Nanomicro Lett; 2024 Feb; 16(1):138. PubMed ID: 38421464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced Cycling Performance of Rechargeable Zinc-Air Flow Batteries Using Potassium Persulfate as Electrolyte Additive.
    Khezri R; Hosseini S; Lahiri A; Motlagh SR; Nguyen MT; Yonezawa T; Kheawhom S
    Int J Mol Sci; 2020 Oct; 21(19):. PubMed ID: 33023274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advanced Architectures of Air Electrodes in Zinc-Air Batteries and Hydrogen Fuel Cells.
    Li L; Tang X; Wu B; Huang B; Yuan K; Chen Y
    Adv Mater; 2024 Mar; 36(13):e2308326. PubMed ID: 37823716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal-organic framework based bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries: current progress and prospects.
    Li Y; Cui M; Yin Z; Chen S; Ma T
    Chem Sci; 2020 Oct; 11(43):11646-11671. PubMed ID: 34094409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Overview and Future Perspectives of Rechargeable Flexible Zn-Air Batteries.
    Bai L; Wang D; Wang W; Yan W
    ChemSusChem; 2024 Mar; ():e202400080. PubMed ID: 38533691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Hybrid Redox-Mediated Zinc-Air Fuel Cell for Scalable and Sustained Power Generation.
    Song Y; Xia L; Salla M; Xi S; Fu W; Wang W; Gao M; Huang S; Huang S; Wang X; Yu X; Niu T; Zhang Y; Wang S; Han M; Ni M; Wang Q; Zhang H
    Angew Chem Int Ed Engl; 2024 Apr; 63(16):e202314796. PubMed ID: 38391058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design Principles and Mechanistic Understandings of Non-Noble-Metal Bifunctional Electrocatalysts for Zinc-Air Batteries.
    Gao Y; Liu L; Jiang Y; Yu D; Zheng X; Wang J; Liu J; Luo D; Zhang Y; Shi Z; Wang X; Deng YP; Chen Z
    Nanomicro Lett; 2024 Mar; 16(1):162. PubMed ID: 38530476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomass-Derived Catalytically Active Carbon Materials for the Air Electrode of Zn-air Batteries.
    Zhou T; Wu X; Liu S; Wang A; Liu Y; Zhou W; Sun K; Li S; Zhou J; Li B; Jiang J
    ChemSusChem; 2024 Feb; ():e202301779. PubMed ID: 38416074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Power-Density Rechargeable Hybrid Alkali/Acid Zn-Air Battery Performance Through Value-Added Conversion Charging.
    Yin X; Sun W; Chen K; Lu Z; Chen J; Cai P; Wen Z
    Adv Sci (Weinh); 2024 Jun; 11(23):e2402343. PubMed ID: 38572506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zinc Powder Anodes for Rechargeable Aqueous Zinc-Based Batteries.
    Li Q; Li N; Zhi C
    Nano Lett; 2024 Apr; 24(14):4055-4063. PubMed ID: 38554070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Additives for Aqueous Zinc-Ion Batteries: Recent Progress, Mechanism Analysis, and Future Perspectives.
    Cao J; Zhao F; Guan W; Yang X; Zhao Q; Gao L; Ren X; Wu G; Liu A
    Small; 2024 Apr; ():e2400221. PubMed ID: 38586921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward a Metal Anode-Free Zinc-Air Battery for Next-Generation Energy Storage.
    Deckenbach D; Schneider JJ
    Small; 2024 May; 20(22):e2311065. PubMed ID: 38319023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent Advances in Catalyst Design and Performance Optimization of Nanostructured Cathode Materials in Zinc-Air Batteries.
    Shi H; Gao S; Liu X; Wang Y; Zhou S; Liu Q; Zhang L; Hu G
    Small; 2024 Jun; 20(25):e2309557. PubMed ID: 38705855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-Healing Ionogel-Enabled Self-Healing and Wide-Temperature Flexible Zinc-Air Batteries with Ultra-Long Cycling Lives.
    Li H; Xu F; Li Y; Sun J
    Adv Sci (Weinh); 2024 Jul; 11(25):e2402193. PubMed ID: 38569521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorine Chemistry in Rechargeable Batteries: Challenges, Progress, and Perspectives.
    Wang Y; Yang X; Meng Y; Wen Z; Han R; Hu X; Sun B; Kang F; Li B; Zhou D; Wang C; Wang G
    Chem Rev; 2024 Mar; 124(6):3494-3589. PubMed ID: 38478597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Energy-Density Solid-State Metal-Air Batteries: Progress, Challenges, and Perspectives.
    Wang T; Yang T; Luo D; Fowler M; Yu A; Chen Z
    Small; 2024 Apr; 20(17):e2309306. PubMed ID: 38098363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gaining More Insights from Synchrotron-Based X-ray Spectroscopy for Alkali Ion Rechargeable Batteries.
    Chen S; Jiao S; Liang Q; Li P; Yin J; Li Q; Yu X; Li Q
    Anal Chem; 2024 May; 96(20):8021-8035. PubMed ID: 38659100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aluminum-air batteries: current advances and promises with future directions.
    Rani B; Yadav JK; Saini P; Pandey AP; Dixit A
    RSC Adv; 2024 May; 14(25):17628-17663. PubMed ID: 38832240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Challenges and Strategies of Aluminum Anodes for High-Performance Aluminum-Air Batteries.
    Zhang Y; Lv C; Zhu Y; Kuang J; Wang H; Li Y; Tang Y
    Small Methods; 2024 May; 8(5):e2300911. PubMed ID: 38150657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photo-Assisted Rechargeable Metal Batteries: Principles, Progress, and Perspectives.
    Zhang P; Cai M; Wei Y; Zhang J; Li K; Silva SRP; Shao G; Zhang P
    Adv Sci (Weinh); 2024 Jun; ():e2402448. PubMed ID: 38877647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.