These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 38422386)

  • 1. Automatic Prediction of Peak Optical Absorption Wavelengths in Molecules Using Convolutional Neural Networks.
    Jung SG; Jung G; Cole JM
    J Chem Inf Model; 2024 Mar; 64(5):1486-1501. PubMed ID: 38422386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-fidelity prediction of molecular optical peaks with deep learning.
    Greenman KP; Green WH; Gómez-Bombarelli R
    Chem Sci; 2022 Jan; 13(4):1152-1162. PubMed ID: 35211282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic Prediction of Band Gaps of Inorganic Materials Using a Gradient Boosted and Statistical Feature Selection Workflow.
    Jung SG; Jung G; Cole JM
    J Chem Inf Model; 2024 Feb; 64(4):1187-1200. PubMed ID: 38320103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uncertainty-Quantified Hybrid Machine Learning/Density Functional Theory High Throughput Screening Method for Crystals.
    Noh J; Gu GH; Kim S; Jung Y
    J Chem Inf Model; 2020 Apr; 60(4):1996-2003. PubMed ID: 32208718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of Frequency-Dependent Optical Spectrum for Solid Materials: A Multioutput and Multifidelity Machine Learning Approach.
    Ibrahim A; Ataca C
    ACS Appl Mater Interfaces; 2024 Aug; 16(31):41145-41156. PubMed ID: 39047291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergistic Approach of Ultrafast Spectroscopy and Molecular Simulations in the Characterization of Intramolecular Charge Transfer in Push-Pull Molecules.
    Patrizi B; Cozza C; Pietropaolo A; Foggi P; Siciliani de Cumis M
    Molecules; 2020 Jan; 25(2):. PubMed ID: 31968694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward Predicting Intermetallics Surface Properties with High-Throughput DFT and Convolutional Neural Networks.
    Palizhati A; Zhong W; Tran K; Back S; Ulissi ZW
    J Chem Inf Model; 2019 Nov; 59(11):4742-4749. PubMed ID: 31644279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine Learning Enables Highly Accurate Predictions of Photophysical Properties of Organic Fluorescent Materials: Emission Wavelengths and Quantum Yields.
    Ju CW; Bai H; Li B; Liu R
    J Chem Inf Model; 2021 Mar; 61(3):1053-1065. PubMed ID: 33620207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. QSAR modeling without descriptors using graph convolutional neural networks: the case of mutagenicity prediction.
    Hung C; Gini G
    Mol Divers; 2021 Aug; 25(3):1283-1299. PubMed ID: 34146224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Excitations, optical absorption spectra, and optical excitonic gaps of heterofullerenes. I. C60, C59N+, and C48N12: theory and experiment.
    Xie RH; Bryant GW; Sun G; Nicklaus MC; Heringer D; Frauenheim T; Manaa MR; Smith VH; Araki Y; Ito O
    J Chem Phys; 2004 Mar; 120(11):5133-47. PubMed ID: 15267383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning hidden patterns from patient multivariate time series data using convolutional neural networks: A case study of healthcare cost prediction.
    Morid MA; Sheng ORL; Kawamoto K; Abdelrahman S
    J Biomed Inform; 2020 Nov; 111():103565. PubMed ID: 32980530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of Energetic Material Properties from Electronic Structure Using 3D Convolutional Neural Networks.
    Casey AD; Son SF; Bilionis I; Barnes BC
    J Chem Inf Model; 2020 Oct; 60(10):4457-4473. PubMed ID: 33054184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Active learning using deep Bayesian networks for surgical workflow analysis.
    Bodenstedt S; Rivoir D; Jenke A; Wagner M; Breucha M; Müller-Stich B; Mees ST; Weitz J; Speidel S
    Int J Comput Assist Radiol Surg; 2019 Jun; 14(6):1079-1087. PubMed ID: 30968355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Boosting tissue-specific prediction of active cis-regulatory regions through deep learning and Bayesian optimization techniques.
    Cappelletti L; Petrini A; Gliozzo J; Casiraghi E; Schubach M; Kircher M; Valentini G
    BMC Bioinformatics; 2022 Dec; 23(Suppl 2):154. PubMed ID: 36510125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Δ-Quantum machine-learning for medicinal chemistry.
    Atz K; Isert C; Böcker MNA; Jiménez-Luna J; Schneider G
    Phys Chem Chem Phys; 2022 May; 24(18):10775-10783. PubMed ID: 35470831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of deep convolutional networks for prediction of image rapid serial visual presentation events.
    Zijing Mao ; Wan Xiang Yao ; Yufe Huang
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():2035-2038. PubMed ID: 29060296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physics-driven learning of x-ray skin dose distribution in interventional procedures.
    Roser P; Zhong X; Birkhold A; Strobel N; Kowarschik M; Fahrig R; Maier A
    Med Phys; 2019 Oct; 46(10):4654-4665. PubMed ID: 31407346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tongue image quality assessment based on a deep convolutional neural network.
    Jiang T; Hu XJ; Yao XH; Tu LP; Huang JB; Ma XX; Cui J; Wu QF; Xu JT
    BMC Med Inform Decis Mak; 2021 May; 21(1):147. PubMed ID: 33952228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.
    Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G
    Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gradient boosted and statistical feature selection workflow for materials property predictions.
    Jung SG; Jung G; Cole JM
    J Chem Phys; 2023 Nov; 159(19):. PubMed ID: 37971034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.