These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 38422576)
1. Overexpression of the Phosphatidylcholine:DiacylglycerolCholinephosphotransferase (PDCT) gene increases carbon flux toward triacylglycerol (TAG) synthesis in Camelinasativa seeds. Abdullah HM; Pang N; Chilcoat B; Shachar-Hill Y; Schnell DJ; Dhankher OP Plant Physiol Biochem; 2024 Mar; 208():108470. PubMed ID: 38422576 [TBL] [Abstract][Full Text] [Related]
2. Expression of a Lychee Yu XH; Cai Y; Chai J; Schwender J; Shanklin J Plant Physiol; 2019 Jul; 180(3):1351-1361. PubMed ID: 31123096 [TBL] [Abstract][Full Text] [Related]
3. Engineering Camelina sativa (L.) Crantz for enhanced oil and seed yields by combining diacylglycerol acyltransferase1 and glycerol-3-phosphate dehydrogenase expression. Chhikara S; Abdullah HM; Akbari P; Schnell D; Dhankher OP Plant Biotechnol J; 2018 May; 16(5):1034-1045. PubMed ID: 28975735 [TBL] [Abstract][Full Text] [Related]
4. A fatty acid condensing enzyme from Physaria fendleri increases hydroxy fatty acid accumulation in transgenic oilseeds of Camelina sativa. Snapp AR; Kang J; Qi X; Lu C Planta; 2014 Sep; 240(3):599-610. PubMed ID: 25023632 [TBL] [Abstract][Full Text] [Related]
5. Camelina sativa phosphatidylcholine:diacylglycerol cholinephosphotransferase-catalyzed interconversion does not discriminate between substrates. Demski K; Jeppson S; Stymne S; Lager I Lipids; 2021 Nov; 56(6):591-602. PubMed ID: 34463366 [TBL] [Abstract][Full Text] [Related]
6. Phospholipase Dζ Enhances Diacylglycerol Flux into Triacylglycerol. Yang W; Wang G; Li J; Bates PD; Wang X; Allen DK Plant Physiol; 2017 May; 174(1):110-123. PubMed ID: 28325849 [TBL] [Abstract][Full Text] [Related]
7. The phosphatidylcholine diacylglycerol cholinephosphotransferase is required for efficient hydroxy fatty acid accumulation in transgenic Arabidopsis. Hu Z; Ren Z; Lu C Plant Physiol; 2012 Apr; 158(4):1944-54. PubMed ID: 22371508 [TBL] [Abstract][Full Text] [Related]
8. Identification of bottlenecks in the accumulation of cyclic fatty acids in camelina seed oil. Yu XH; Cahoon RE; Horn PJ; Shi H; Prakash RR; Cai Y; Hearney M; Chapman KD; Cahoon EB; Schwender J; Shanklin J Plant Biotechnol J; 2018 Apr; 16(4):926-938. PubMed ID: 28929610 [TBL] [Abstract][Full Text] [Related]
9. Comparative transcriptome and metabolome analysis suggests bottlenecks that limit seed and oil yields in transgenic Abdullah HM; Chhikara S; Akbari P; Schnell DJ; Pareek A; Dhankher OP Biotechnol Biofuels; 2018; 11():335. PubMed ID: 30574188 [TBL] [Abstract][Full Text] [Related]
10. Redirection of metabolic flux for high levels of omega-7 monounsaturated fatty acid accumulation in camelina seeds. Nguyen HT; Park H; Koster KL; Cahoon RE; Nguyen HT; Shanklin J; Clemente TE; Cahoon EB Plant Biotechnol J; 2015 Jan; 13(1):38-50. PubMed ID: 25065607 [TBL] [Abstract][Full Text] [Related]
11. The pathway of triacylglycerol synthesis through phosphatidylcholine in Arabidopsis produces a bottleneck for the accumulation of unusual fatty acids in transgenic seeds. Bates PD; Browse J Plant J; 2011 Nov; 68(3):387-99. PubMed ID: 21711402 [TBL] [Abstract][Full Text] [Related]
12. Camelina sativa: An ideal platform for the metabolic engineering and field production of industrial lipids. Bansal S; Durrett TP Biochimie; 2016 Jan; 120():9-16. PubMed ID: 26107412 [TBL] [Abstract][Full Text] [Related]
13. Ectopic expression of cDNAs from larkspur (Consolida ajacis) for increased synthesis of gondoic acid (cis-11 eicosenoic acid) and its positional redistribution in seed triacylglycerol of Camelina sativa. Sarvas C; Puttick D; Forseille L; Cram D; Smith MA Planta; 2021 Jul; 254(2):32. PubMed ID: 34287699 [TBL] [Abstract][Full Text] [Related]
16. Kinetic complexities of triacylglycerol accumulation in developing embryos from Camelina sativa provide evidence for multiple biosynthetic systems. Pollard M; Shachar-Hill Y J Biol Chem; 2022 Jan; 298(1):101396. PubMed ID: 34774796 [TBL] [Abstract][Full Text] [Related]
17. Nonspecific phospholipase C6 increases seed oil production in oilseed Brassicaceae plants. Cai G; Fan C; Liu S; Yang Q; Liu D; Wu J; Li J; Zhou Y; Guo L; Wang X New Phytol; 2020 May; 226(4):1055-1073. PubMed ID: 32176333 [TBL] [Abstract][Full Text] [Related]
18. A Specialized Diacylglycerol Acyltransferase Contributes to the Extreme Medium-Chain Fatty Acid Content of Iskandarov U; Silva JE; Kim HJ; Andersson M; Cahoon RE; Mockaitis K; Cahoon EB Plant Physiol; 2017 May; 174(1):97-109. PubMed ID: 28325847 [TBL] [Abstract][Full Text] [Related]
19. Triacylglycerol remodeling in Physaria fendleri indicates oil accumulation is dynamic and not a metabolic endpoint. Bhandari S; Bates PD Plant Physiol; 2021 Oct; 187(2):799-815. PubMed ID: 34608961 [TBL] [Abstract][Full Text] [Related]
20. Expression of a high-activity diacylglycerol acetyltransferase results in enhanced synthesis of acetyl-TAG in camelina seed oil. Alkotami L; Kornacki C; Campbell S; McIntosh G; Wilson C; Tran TNT; Durrett TP Plant J; 2021 May; 106(4):953-964. PubMed ID: 33619818 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]