These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 38422576)
21. Accumulation of medium-chain, saturated fatty acyl moieties in seed oils of transgenic Camelina sativa. Hu Z; Wu Q; Dalal J; Vasani N; Lopez HO; Sederoff HW; Qu R PLoS One; 2017; 12(2):e0172296. PubMed ID: 28212406 [TBL] [Abstract][Full Text] [Related]
22. Two Acyltransferases Contribute Differently to Linolenic Acid Levels in Seed Oil. Marmon S; Sturtevant D; Herrfurth C; Chapman K; Stymne S; Feussner I Plant Physiol; 2017 Apr; 173(4):2081-2095. PubMed ID: 28235891 [TBL] [Abstract][Full Text] [Related]
23. Interactions between genetics and environment shape Camelina seed oil composition. Brock JR; Scott T; Lee AY; Mosyakin SL; Olsen KM BMC Plant Biol; 2020 Sep; 20(1):423. PubMed ID: 32928104 [TBL] [Abstract][Full Text] [Related]
24. Overexpression of patatin-related phospholipase AIIIδ altered plant growth and increased seed oil content in camelina. Li M; Wei F; Tawfall A; Tang M; Saettele A; Wang X Plant Biotechnol J; 2015 Aug; 13(6):766-78. PubMed ID: 25557877 [TBL] [Abstract][Full Text] [Related]
25. Simultaneous Targeting of Multiple Gene Homeologs to Alter Seed Oil Production in Camelina sativa. Aznar-Moreno JA; Durrett TP Plant Cell Physiol; 2017 Jul; 58(7):1260-1267. PubMed ID: 28444368 [TBL] [Abstract][Full Text] [Related]
26. Enhancing microRNA167A expression in seed decreases the α-linolenic acid content and increases seed size in Camelina sativa. Na G; Mu X; Grabowski P; Schmutz J; Lu C Plant J; 2019 Apr; 98(2):346-358. PubMed ID: 30604453 [TBL] [Abstract][Full Text] [Related]
27. Class A lysophosphatidic acid acyltransferase 2 from Camelina sativa promotes very long-chain fatty acids accumulation in phospholipid and triacylglycerol. Yin Y; Raboanatahiry N; Chen K; Chen X; Tian T; Jia J; He H; He J; Guo Z; Yu L; Li M Plant J; 2022 Dec; 112(5):1141-1158. PubMed ID: 36209492 [TBL] [Abstract][Full Text] [Related]
28. Camelina seed transcriptome: a tool for meal and oil improvement and translational research. Nguyen HT; Silva JE; Podicheti R; Macrander J; Yang W; Nazarenus TJ; Nam JW; Jaworski JG; Lu C; Scheffler BE; Mockaitis K; Cahoon EB Plant Biotechnol J; 2013 Aug; 11(6):759-69. PubMed ID: 23551501 [TBL] [Abstract][Full Text] [Related]
29. Significant enhancement of fatty acid composition in seeds of the allohexaploid, Camelina sativa, using CRISPR/Cas9 gene editing. Jiang WZ; Henry IM; Lynagh PG; Comai L; Cahoon EB; Weeks DP Plant Biotechnol J; 2017 May; 15(5):648-657. PubMed ID: 27862889 [TBL] [Abstract][Full Text] [Related]
30. Lipidome analysis and characterization of Buglossoides arvensis acyltransferases that incorporate polyunsaturated fatty acids into triacylglycerols. Parchuri P; Pappanoor A; Naeem A; Durrett TP; Welti R; R V S Plant Sci; 2022 Nov; 324():111445. PubMed ID: 36037983 [TBL] [Abstract][Full Text] [Related]
31. Transcriptome profiling of Camelina sativa to identify genes involved in triacylglycerol biosynthesis and accumulation in the developing seeds. Abdullah HM; Akbari P; Paulose B; Schnell D; Qi W; Park Y; Pareek A; Dhankher OP Biotechnol Biofuels; 2016; 9():136. PubMed ID: 27382413 [TBL] [Abstract][Full Text] [Related]
32. Functional Characterization of the Effects of CsDGAT1 and CsDGAT2 on Fatty Acid Composition in Lee KR; Yeo Y; Lee J; Kim S; Im C; Kim I; Lee J; Lee SK; Suh MC; Kim HU Int J Mol Sci; 2024 Jun; 25(13):. PubMed ID: 39000052 [TBL] [Abstract][Full Text] [Related]
33. In Silico Analysis of Fatty Acid Desaturases Structures in Raboanatahiry N; Yin Y; Chen K; He J; Yu L; Li M Int J Mol Sci; 2021 Oct; 22(19):. PubMed ID: 34639198 [TBL] [Abstract][Full Text] [Related]
35. Production of C6-C14 Medium-Chain Fatty Acids in Seeds and Leaves via Overexpression of Single Hotdog-Fold Acyl-Lipid Thioesterases. Kalinger RS; Williams D; Ahmadi Pirshahid A; Pulsifer IP; Rowland O Lipids; 2021 May; 56(3):327-344. PubMed ID: 33547664 [TBL] [Abstract][Full Text] [Related]
36. Reorganization of Acyl Flux through the Lipid Metabolic Network in Oil-Accumulating Tobacco Leaves. Zhou XR; Bhandari S; Johnson BS; Kotapati HK; Allen DK; Vanhercke T; Bates PD Plant Physiol; 2020 Feb; 182(2):739-755. PubMed ID: 31792147 [TBL] [Abstract][Full Text] [Related]
37. The coexpression of two desaturases provides an optimized reduction of saturates in camelina oil. Bengtsson JD; Wallis JG; Bai S; Browse J Plant Biotechnol J; 2023 Mar; 21(3):497-505. PubMed ID: 36382992 [TBL] [Abstract][Full Text] [Related]
38. Metabolic engineering of oilseed crops to produce high levels of novel acetyl glyceride oils with reduced viscosity, freezing point and calorific value. Liu J; Rice A; McGlew K; Shaw V; Park H; Clemente T; Pollard M; Ohlrogge J; Durrett TP Plant Biotechnol J; 2015 Aug; 13(6):858-65. PubMed ID: 25756355 [TBL] [Abstract][Full Text] [Related]
39. Castor LPCAT and PDAT1A Act in Concert to Promote Transacylation of Hydroxy-Fatty Acid onto Triacylglycerol. Lunn D; Le A; Wallis JG; Browse J Plant Physiol; 2020 Oct; 184(2):709-719. PubMed ID: 32737074 [TBL] [Abstract][Full Text] [Related]
40. Functional analysis of β-ketoacyl-CoA synthase from biofuel feedstock Thlaspi arvense reveals differences in the triacylglycerol biosynthetic pathway among Brassicaceae. Claver A; de la Vega M; Rey-Giménez R; Luján MÁ; Picorel R; López MV; Alfonso M Plant Mol Biol; 2020 Oct; 104(3):283-296. PubMed ID: 32740897 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]