These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 38422958)

  • 1. SpecLoop predicts cell type-specific chromatin loop via transcription factor cooperation.
    Ren L; Ma W; Wang Y
    Comput Biol Med; 2024 Mar; 171():108182. PubMed ID: 38422958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. REUNION: transcription factor binding prediction and regulatory association inference from single-cell multi-omics data.
    Yang Y; Pe'er D
    Bioinformatics; 2024 Jun; 40(Suppl 1):i567-i575. PubMed ID: 38940155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting transcription factor site occupancy using DNA sequence intrinsic and cell-type specific chromatin features.
    Kumar S; Bucher P
    BMC Bioinformatics; 2016 Jan; 17 Suppl 1(Suppl 1):4. PubMed ID: 26818008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Revealing transcription factor and histone modification co-localization and dynamics across cell lines by integrating ChIP-seq and RNA-seq data.
    Zhang L; Xue G; Liu J; Li Q; Wang Y
    BMC Genomics; 2018 Dec; 19(Suppl 10):914. PubMed ID: 30598100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence and chromatin determinants of cell-type-specific transcription factor binding.
    Arvey A; Agius P; Noble WS; Leslie C
    Genome Res; 2012 Sep; 22(9):1723-34. PubMed ID: 22955984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship between histone modifications and transcription factor binding is protein family specific.
    Xin B; Rohs R
    Genome Res; 2018 Mar; 28(3):321-333. PubMed ID: 29326300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing the model transferability for prediction of transcription factor binding sites based on chromatin accessibility.
    Liu S; Zibetti C; Wan J; Wang G; Blackshaw S; Qian J
    BMC Bioinformatics; 2017 Jul; 18(1):355. PubMed ID: 28750606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BinDNase: a discriminatory approach for transcription factor binding prediction using DNase I hypersensitivity data.
    Kähärä J; Lähdesmäki H
    Bioinformatics; 2015 Sep; 31(17):2852-9. PubMed ID: 25957350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DeepCAGE: Incorporating Transcription Factors in Genome-wide Prediction of Chromatin Accessibility.
    Liu Q; Hua K; Zhang X; Wong WH; Jiang R
    Genomics Proteomics Bioinformatics; 2022 Jun; 20(3):496-507. PubMed ID: 35293310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell-type specificity of ChIP-predicted transcription factor binding sites.
    Håndstad T; Rye M; Močnik R; Drabløs F; Sætrom P
    BMC Genomics; 2012 Aug; 13():372. PubMed ID: 22863112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of Sequence Motif, Chromatin State, and DNA Structure Features to Predictive Models of Transcription Factor Binding in Yeast.
    Tsai ZT; Shiu SH; Tsai HK
    PLoS Comput Biol; 2015 Aug; 11(8):e1004418. PubMed ID: 26291518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Role of Chromatin Accessibility in cis-Regulatory Evolution.
    Peng PC; Khoueiry P; Girardot C; Reddington JP; Garfield DA; Furlong EEM; Sinha S
    Genome Biol Evol; 2019 Jul; 11(7):1813-1828. PubMed ID: 31114856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Canonical and single-cell Hi-C reveal distinct chromatin interaction sub-networks of mammalian transcription factors.
    Ma X; Ezer D; Adryan B; Stevens TJ
    Genome Biol; 2018 Oct; 19(1):174. PubMed ID: 30359306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imputation for transcription factor binding predictions based on deep learning.
    Qin Q; Feng J
    PLoS Comput Biol; 2017 Feb; 13(2):e1005403. PubMed ID: 28234893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting transcription factor binding using ensemble random forest models.
    Behjati Ardakani F; Schmidt F; Schulz MH
    F1000Res; 2018; 7():1603. PubMed ID: 31723409
    [No Abstract]   [Full Text] [Related]  

  • 16. Characterizing collaborative transcription regulation with a graph-based deep learning approach.
    Zhang Z; Feng F; Liu J
    PLoS Comput Biol; 2022 Jun; 18(6):e1010162. PubMed ID: 35666736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Virtual ChIP-seq: predicting transcription factor binding by learning from the transcriptome.
    Karimzadeh M; Hoffman MM
    Genome Biol; 2022 Jun; 23(1):126. PubMed ID: 35681170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational prediction and characterization of cell-type-specific and shared binding sites.
    Zhang Q; Teng P; Wang S; He Y; Cui Z; Guo Z; Liu Y; Yuan C; Liu Q; Huang DS
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36484687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mocap: large-scale inference of transcription factor binding sites from chromatin accessibility.
    Chen X; Yu B; Carriero N; Silva C; Bonneau R
    Nucleic Acids Res; 2017 May; 45(8):4315-4329. PubMed ID: 28334916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cooperative binding of transcription factors in the human genome.
    Nie Y; Shu C; Sun X
    Genomics; 2020 Sep; 112(5):3427-3434. PubMed ID: 32574834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.