These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
431 related articles for article (PubMed ID: 38422966)
1. LumVertCancNet: A novel 3D lumbar vertebral body cancellous bone location and segmentation method based on hybrid Swin-transformer. Zhang Y; Shi Z; Wang H; Cui S; Zhang L; Liu J; Shan X; Liu Y; Fang L Comput Biol Med; 2024 Mar; 171():108237. PubMed ID: 38422966 [TBL] [Abstract][Full Text] [Related]
2. Dual encoder network with transformer-CNN for multi-organ segmentation. Hong Z; Chen M; Hu W; Yan S; Qu A; Chen L; Chen J Med Biol Eng Comput; 2023 Mar; 61(3):661-671. PubMed ID: 36580181 [TBL] [Abstract][Full Text] [Related]
3. CoTrFuse: a novel framework by fusing CNN and transformer for medical image segmentation. Chen Y; Wang T; Tang H; Zhao L; Zhang X; Tan T; Gao Q; Du M; Tong T Phys Med Biol; 2023 Aug; 68(17):. PubMed ID: 37605997 [TBL] [Abstract][Full Text] [Related]
4. SwinCross: Cross-modal Swin transformer for head-and-neck tumor segmentation in PET/CT images. Li GY; Chen J; Jang SI; Gong K; Li Q Med Phys; 2024 Mar; 51(3):2096-2107. PubMed ID: 37776263 [TBL] [Abstract][Full Text] [Related]
5. Efficient brain tumor segmentation using Swin transformer and enhanced local self-attention. Ghazouani F; Vera P; Ruan S Int J Comput Assist Radiol Surg; 2024 Feb; 19(2):273-281. PubMed ID: 37796413 [TBL] [Abstract][Full Text] [Related]
6. VSmTrans: A hybrid paradigm integrating self-attention and convolution for 3D medical image segmentation. Liu T; Bai Q; Torigian DA; Tong Y; Udupa JK Med Image Anal; 2024 Dec; 98():103295. PubMed ID: 39217673 [TBL] [Abstract][Full Text] [Related]
7. SymTC: A symbiotic Transformer-CNN net for instance segmentation of lumbar spine MRI. Chen J; Qian L; Ma L; Urakov T; Gu W; Liang L Comput Biol Med; 2024 Sep; 179():108795. PubMed ID: 38955128 [TBL] [Abstract][Full Text] [Related]
8. MS-TCNet: An effective Transformer-CNN combined network using multi-scale feature learning for 3D medical image segmentation. Ao Y; Shi W; Ji B; Miao Y; He W; Jiang Z Comput Biol Med; 2024 Mar; 170():108057. PubMed ID: 38301516 [TBL] [Abstract][Full Text] [Related]
9. MSCT-UNET: multi-scale contrastive transformer within U-shaped network for medical image segmentation. Xi H; Dong H; Sheng Y; Cui H; Huang C; Li J; Zhu J Phys Med Biol; 2023 Dec; 69(1):. PubMed ID: 38061069 [No Abstract] [Full Text] [Related]
10. Multi-task approach based on combined CNN-transformer for efficient segmentation and classification of breast tumors in ultrasound images. Tagnamas J; Ramadan H; Yahyaouy A; Tairi H Vis Comput Ind Biomed Art; 2024 Jan; 7(1):2. PubMed ID: 38273164 [TBL] [Abstract][Full Text] [Related]
11. Hybrid CNN-Transformer Network With Circular Feature Interaction for Acute Ischemic Stroke Lesion Segmentation on Non-Contrast CT Scans. Kuang H; Wang Y; Liu J; Wang J; Cao Q; Hu B; Qiu W; Wang J IEEE Trans Med Imaging; 2024 Jun; 43(6):2303-2316. PubMed ID: 38319756 [TBL] [Abstract][Full Text] [Related]
12. ETUNet:Exploring efficient transformer enhanced UNet for 3D brain tumor segmentation. Zhang W; Chen S; Ma Y; Liu Y; Cao X Comput Biol Med; 2024 Mar; 171():108005. PubMed ID: 38340437 [TBL] [Abstract][Full Text] [Related]
13. Enhancing surgical instrument segmentation: integrating vision transformer insights with adapter. Wei M; Shi M; Vercauteren T Int J Comput Assist Radiol Surg; 2024 Jul; 19(7):1313-1320. PubMed ID: 38717737 [TBL] [Abstract][Full Text] [Related]
14. SwinBTS: A Method for 3D Multimodal Brain Tumor Segmentation Using Swin Transformer. Jiang Y; Zhang Y; Lin X; Dong J; Cheng T; Liang J Brain Sci; 2022 Jun; 12(6):. PubMed ID: 35741682 [TBL] [Abstract][Full Text] [Related]
15. iU-Net: a hybrid structured network with a novel feature fusion approach for medical image segmentation. Jiang Y; Dong J; Cheng T; Zhang Y; Lin X; Liang J BioData Min; 2023 Feb; 16(1):5. PubMed ID: 36805687 [TBL] [Abstract][Full Text] [Related]
16. A new architecture combining convolutional and transformer-based networks for automatic 3D multi-organ segmentation on CT images. Li C; Bagher-Ebadian H; Sultan R; Elshaikh M; Movsas B; Zhu D; Chetty IJ Med Phys; 2023 Nov; 50(11):6990-7002. PubMed ID: 37738468 [TBL] [Abstract][Full Text] [Related]
17. Swin Unet3D: a three-dimensional medical image segmentation network combining vision transformer and convolution. Cai Y; Long Y; Han Z; Liu M; Zheng Y; Yang W; Chen L BMC Med Inform Decis Mak; 2023 Feb; 23(1):33. PubMed ID: 36788560 [TBL] [Abstract][Full Text] [Related]
18. O-Net: A Novel Framework With Deep Fusion of CNN and Transformer for Simultaneous Segmentation and Classification. Wang T; Lan J; Han Z; Hu Z; Huang Y; Deng Y; Zhang H; Wang J; Chen M; Jiang H; Lee RG; Gao Q; Du M; Tong T; Chen G Front Neurosci; 2022; 16():876065. PubMed ID: 35720715 [TBL] [Abstract][Full Text] [Related]
19. FAFuse: A Four-Axis Fusion framework of CNN and Transformer for medical image segmentation. Xu S; Xiao D; Yuan B; Liu Y; Wang X; Li N; Shi L; Chen J; Zhang JX; Wang Y; Cao J; Shao Y; Jiang M Comput Biol Med; 2023 Nov; 166():107567. PubMed ID: 37852109 [TBL] [Abstract][Full Text] [Related]
20. ScribFormer: Transformer Makes CNN Work Better for Scribble-Based Medical Image Segmentation. Li Z; Zheng Y; Shan D; Yang S; Li Q; Wang B; Zhang Y; Hong Q; Shen D IEEE Trans Med Imaging; 2024 Jun; 43(6):2254-2265. PubMed ID: 38324425 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]