These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 38422997)
1. An Integrated Clinical and Computerized Tomography-Based Radiomic Feature Model to Separate Benign from Malignant Pleural Effusion. Cai F; Cheng L; Liao X; Xie Y; Wang W; Zhang H; Lu J; Chen R; Chen C; Zhou X; Mo X; Hu G; Huang L Respiration; 2024; 103(7):406-416. PubMed ID: 38422997 [TBL] [Abstract][Full Text] [Related]
2. Development and validation of a machine learning model for differential diagnosis of malignant pleural effusion using routine laboratory data. Wei TT; Zhang JF; Cheng Z; Jiang L; Li JY; Zhou L Ther Adv Respir Dis; 2023; 17():17534666231208632. PubMed ID: 37941347 [TBL] [Abstract][Full Text] [Related]
3. CT-based radiomics analysis of different machine learning models for differentiating benign and malignant parotid tumors. Zheng Y; Zhou D; Liu H; Wen M Eur Radiol; 2022 Oct; 32(10):6953-6964. PubMed ID: 35484339 [TBL] [Abstract][Full Text] [Related]
4. Diagnostic Value of Six Tumor Markers for Malignant Pleural Effusion in 1,230 Patients: A Single-Center Retrospective Study. Fan X; Liu Y; Liang Z; Wang S; Yang J; Wu A Pathol Oncol Res; 2022; 28():1610280. PubMed ID: 35515016 [No Abstract] [Full Text] [Related]
5. Radiomics-based machine learning in the differentiation of benign and malignant bowel wall thickening radiomics in bowel wall thickening. Bülbül HM; Burakgazi G; Kesimal U; Kaba E Jpn J Radiol; 2024 Aug; 42(8):872-879. PubMed ID: 38536559 [TBL] [Abstract][Full Text] [Related]
6. Development and validation of a radiomics nomogram for diagnosis of malignant pleural effusion. Wei M; Zhang Y; Zhao L; Zhao Z Discov Oncol; 2023 Nov; 14(1):213. PubMed ID: 37999794 [TBL] [Abstract][Full Text] [Related]
7. The value of computed tomography-based radiomics for predicting malignant pleural effusions. Xing ZC; Guo HZ; Hou ZL; Zhang HX; Zhang S Front Oncol; 2024; 14():1419343. PubMed ID: 39188676 [TBL] [Abstract][Full Text] [Related]
8. Computed Tomography-Based Radiomics Model to Predict Central Cervical Lymph Node Metastases in Papillary Thyroid Carcinoma: A Multicenter Study. Li J; Wu X; Mao N; Zheng G; Zhang H; Mou Y; Jia C; Mi J; Song X Front Endocrinol (Lausanne); 2021; 12():741698. PubMed ID: 34745008 [TBL] [Abstract][Full Text] [Related]
9. Comparative assessment of the capability of machine learning-based radiomic models for predicting omental metastasis in locally advanced gastric cancer. Wu A; Luo L; Zeng Q; Wu C; Shu X; Huang P; Wang Z; Hu T; Feng Z; Tu Y; Zhu Y; Cao Y; Li Z Sci Rep; 2024 Jul; 14(1):16208. PubMed ID: 39003337 [TBL] [Abstract][Full Text] [Related]
10. Development and validation of a Radiopathomics model based on CT scans and whole slide images for discriminating between Stage I-II and Stage III gastric cancer. Tan Y; Feng LJ; Huang YH; Xue JW; Feng ZB; Long LL BMC Cancer; 2024 Mar; 24(1):368. PubMed ID: 38519974 [TBL] [Abstract][Full Text] [Related]
11. Machine learning model to preoperatively predict T2/T3 staging of laryngeal and hypopharyngeal cancer based on the CT radiomic signature. Liu Q; Liu S; Mao Y; Kang X; Yu M; Chen G Eur Radiol; 2024 Aug; 34(8):5349-5359. PubMed ID: 38206403 [TBL] [Abstract][Full Text] [Related]
12. Novel clinical radiomic nomogram method for differentiating malignant from non-malignant pleural effusions. Han R; Huang L; Zhou S; Shen J; Li P; Li M; Wu X; Wang R Heliyon; 2023 Jul; 9(7):e18056. PubMed ID: 37539225 [TBL] [Abstract][Full Text] [Related]
13. Development and validation of a machine learning-derived radiomics model for diagnosis of osteoporosis and osteopenia using quantitative computed tomography. Xie Q; Chen Y; Hu Y; Zeng F; Wang P; Xu L; Wu J; Li J; Zhu J; Xiang M; Zeng F BMC Med Imaging; 2022 Aug; 22(1):140. PubMed ID: 35941568 [TBL] [Abstract][Full Text] [Related]
14. Machine learning-based CT radiomics enhances bladder cancer staging predictions: A comparative study of clinical, radiomics, and combined models. Xiong S; Fu Z; Deng Z; Li S; Zhan X; Zheng F; Yang H; Liu X; Xu S; Liu H; Fan B; Dong W; Song Y; Fu B Med Phys; 2024 Sep; 51(9):5965-5977. PubMed ID: 38977273 [TBL] [Abstract][Full Text] [Related]
15. Is neuron-specific enolase useful for diagnosing malignant pleural effusions? evidence from a validation study and meta-analysis. Zhu J; Feng M; Liang L; Zeng N; Wan C; Yang T; Shen Y; Wen F BMC Cancer; 2017 Aug; 17(1):590. PubMed ID: 28854885 [TBL] [Abstract][Full Text] [Related]
16. CT Image-Based Radiomic Analysis for Detecting PD-L1 Expression Status in Bladder Cancer Patients. Cao Y; Zhu H; Li Z; Liu C; Ye J Acad Radiol; 2024 Sep; 31(9):3678-3687. PubMed ID: 38556431 [TBL] [Abstract][Full Text] [Related]
17. US-based radiomics analysis of different machine learning models for differentiating benign and malignant BI-RADS 4A breast lesions. Ye J; Chen Y; Pan J; Qiu Y; Luo Z; Xiong Y; He Y; Chen Y; Xie F; Huang W Acad Radiol; 2024 Aug; ():. PubMed ID: 39191562 [TBL] [Abstract][Full Text] [Related]
18. CT-based radiomics analysis of different machine learning models for differentiating gnathic fibrous dysplasia and ossifying fibroma. Zhang AB; Zhao JR; Wang S; Xue J; Zhang JY; Sun ZP; Sun LS; Li TJ Oral Dis; 2024 Nov; 30(8):5243-5254. PubMed ID: 38813877 [TBL] [Abstract][Full Text] [Related]
19. Radiomic signature based on CT imaging to distinguish invasive adenocarcinoma from minimally invasive adenocarcinoma in pure ground-glass nodules with pleural contact. Jiang Y; Che S; Ma S; Liu X; Guo Y; Liu A; Li G; Li Z Cancer Imaging; 2021 Jan; 21(1):1. PubMed ID: 33407884 [TBL] [Abstract][Full Text] [Related]
20. Optimizing the radiomics-machine-learning model based on non-contrast enhanced CT for the simplified risk categorization of thymic epithelial tumors: A large cohort retrospective study. Feng XL; Wang SZ; Chen HH; Huang YX; Xin YK; Zhang T; Cheng DL; Mao L; Li XL; Liu CX; Hu YC; Wang W; Cui GB; Nan HY Lung Cancer; 2022 Apr; 166():150-160. PubMed ID: 35287067 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]