BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 38423052)

  • 1. Deep-learning-based reconstruction of undersampled MRI to reduce scan times: a multicentre, retrospective, cohort study.
    Rastogi A; Brugnara G; Foltyn-Dumitru M; Mahmutoglu MA; Preetha CJ; Kobler E; Pflüger I; Schell M; Deike-Hofmann K; Kessler T; van den Bent MJ; Idbaih A; Platten M; Brandes AA; Nabors B; Stupp R; Bernhardt D; Debus J; Abdollahi A; Gorlia T; Tonn JC; Weller M; Maier-Hein KH; Radbruch A; Wick W; Bendszus M; Meredig H; Kurz FT; Vollmuth P
    Lancet Oncol; 2024 Mar; 25(3):400-410. PubMed ID: 38423052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep-learning-based synthesis of post-contrast T1-weighted MRI for tumour response assessment in neuro-oncology: a multicentre, retrospective cohort study.
    Jayachandran Preetha C; Meredig H; Brugnara G; Mahmutoglu MA; Foltyn M; Isensee F; Kessler T; Pflüger I; Schell M; Neuberger U; Petersen J; Wick A; Heiland S; Debus J; Platten M; Idbaih A; Brandes AA; Winkler F; van den Bent MJ; Nabors B; Stupp R; Maier-Hein KH; Gorlia T; Tonn JC; Weller M; Wick W; Bendszus M; Vollmuth P
    Lancet Digit Health; 2021 Dec; 3(12):e784-e794. PubMed ID: 34688602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated quantitative tumour response assessment of MRI in neuro-oncology with artificial neural networks: a multicentre, retrospective study.
    Kickingereder P; Isensee F; Tursunova I; Petersen J; Neuberger U; Bonekamp D; Brugnara G; Schell M; Kessler T; Foltyn M; Harting I; Sahm F; Prager M; Nowosielski M; Wick A; Nolden M; Radbruch A; Debus J; Schlemmer HP; Heiland S; Platten M; von Deimling A; van den Bent MJ; Gorlia T; Wick W; Bendszus M; Maier-Hein KH
    Lancet Oncol; 2019 May; 20(5):728-740. PubMed ID: 30952559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NPB-REC: A non-parametric Bayesian deep-learning approach for undersampled MRI reconstruction with uncertainty estimation.
    Khawaled S; Freiman M
    Artif Intell Med; 2024 Mar; 149():102798. PubMed ID: 38462289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-domain convolutional neural network (MD-CNN) for radial reconstruction of dynamic cardiac MRI.
    El-Rewaidy H; Fahmy AS; Pashakhanloo F; Cai X; Kucukseymen S; Csecs I; Neisius U; Haji-Valizadeh H; Menze B; Nezafat R
    Magn Reson Med; 2021 Mar; 85(3):1195-1208. PubMed ID: 32924188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of iterative parametric and indirect deep learning-based reconstruction methods in highly undersampled DCE-MR Imaging of the breast.
    Rastogi A; Yalavarthy PK
    Med Phys; 2020 Oct; 47(10):4838-4861. PubMed ID: 32780871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AI-based motion artifact severity estimation in undersampled MRI allowing for selection of appropriate reconstruction models.
    Beljaards L; Pezzotti N; Rao C; Doneva M; van Osch MJP; Staring M
    Med Phys; 2024 May; 51(5):3555-3565. PubMed ID: 38167996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing quality and speed in database-free neural network reconstructions of undersampled MRI with SCAMPI.
    Siedler TM; Jakob PM; Herold V
    Magn Reson Med; 2024 May; ():. PubMed ID: 38748852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A k-space-to-image reconstruction network for MRI using recurrent neural network.
    Oh C; Kim D; Chung JY; Han Y; Park H
    Med Phys; 2021 Jan; 48(1):193-203. PubMed ID: 33128235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calibrationless reconstruction of uniformly-undersampled multi-channel MR data with deep learning estimated ESPIRiT maps.
    Zhang J; Yi Z; Zhao Y; Xiao L; Hu J; Man C; Lau V; Su S; Chen F; Leong ATL; Wu EX
    Magn Reson Med; 2023 Jul; 90(1):280-294. PubMed ID: 37119514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conventional and Deep-Learning-Based Image Reconstructions of Undersampled K-Space Data of the Lumbar Spine Using Compressed Sensing in MRI: A Comparative Study on 20 Subjects.
    Fervers P; Zaeske C; Rauen P; Iuga AI; Kottlors J; Persigehl T; Sonnabend K; Weiss K; Bratke G
    Diagnostics (Basel); 2023 Jan; 13(3):. PubMed ID: 36766523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual-domain accelerated MRI reconstruction using transformers with learning-based undersampling.
    Hong GQ; Wei YT; Morley WAW; Wan M; Mertens AJ; Su Y; Cheng HM
    Comput Med Imaging Graph; 2023 Jun; 106():102206. PubMed ID: 36857952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep learning-enabled pelvic ultrasound images for accurate diagnosis of ovarian cancer in China: a retrospective, multicentre, diagnostic study.
    Gao Y; Zeng S; Xu X; Li H; Yao S; Song K; Li X; Chen L; Tang J; Xing H; Yu Z; Zhang Q; Zeng S; Yi C; Xie H; Xiong X; Cai G; Wang Z; Wu Y; Chi J; Jiao X; Qin Y; Mao X; Chen Y; Jin X; Mo Q; Chen P; Huang Y; Shi Y; Wang J; Zhou Y; Ding S; Zhu S; Liu X; Dong X; Cheng L; Zhu L; Cheng H; Cha L; Hao Y; Jin C; Zhang L; Zhou P; Sun M; Xu Q; Chen K; Gao Z; Zhang X; Ma Y; Liu Y; Xiao L; Xu L; Peng L; Hao Z; Yang M; Wang Y; Ou H; Jia Y; Tian L; Zhang W; Jin P; Tian X; Huang L; Wang Z; Liu J; Fang T; Yan D; Cao H; Ma J; Li X; Zheng X; Lou H; Song C; Li R; Wang S; Li W; Zheng X; Chen J; Li G; Chen R; Xu C; Yu R; Wang J; Xu S; Kong B; Xie X; Ma D; Gao Q
    Lancet Digit Health; 2022 Mar; 4(3):e179-e187. PubMed ID: 35216752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complementation-reinforced network for integrated reconstruction and segmentation of pulmonary gas MRI with high acceleration.
    Li Z; Xiao S; Wang C; Li H; Zhao X; Zhou Q; Rao Q; Fang Y; Xie J; Shi L; Ye C; Zhou X
    Med Phys; 2024 Jan; 51(1):378-393. PubMed ID: 37401205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accelerating image reconstruction for multi-contrast MRI based on Y-Net3.
    Cai X; Hou X; Sun R; Chang X; Zhu H; Jia S; Nie S
    J Xray Sci Technol; 2023; 31(4):797-810. PubMed ID: 37248943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid reconstruction of highly undersampled, non-Cartesian real-time cine k-space data using a perceptual complex neural network (PCNN).
    Shen D; Ghosh S; Haji-Valizadeh H; Pathrose A; Schiffers F; Lee DC; Freed BH; Markl M; Cossairt OS; Katsaggelos AK; Kim D
    NMR Biomed; 2021 Jan; 34(1):e4405. PubMed ID: 32875668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accelerated Cine Cardiac MRI Using Deep Learning-Based Reconstruction: A Systematic Evaluation.
    Pednekar A; Kocaoglu M; Wang H; Tanimoto A; Tkach JA; Lang S; Taylor MD
    J Magn Reson Imaging; 2023 Oct; ():. PubMed ID: 37855257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep learning-based image reconstruction and motion estimation from undersampled radial k-space for real-time MRI-guided radiotherapy.
    Terpstra ML; Maspero M; d'Agata F; Stemkens B; Intven MPW; Lagendijk JJW; van den Berg CAT; Tijssen RHN
    Phys Med Biol; 2020 Aug; 65(15):155015. PubMed ID: 32408295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ReconResNet: Regularised residual learning for MR image reconstruction of Undersampled Cartesian and Radial data.
    Chatterjee S; Breitkopf M; Sarasaen C; Yassin H; Rose G; Nürnberger A; Speck O
    Comput Biol Med; 2022 Apr; 143():105321. PubMed ID: 35219188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sinogram upsampling using Primal-Dual UNet for undersampled CT and radial MRI reconstruction.
    Ernst P; Chatterjee S; Rose G; Speck O; Nürnberger A
    Neural Netw; 2023 Sep; 166():704-721. PubMed ID: 37604079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.