These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 38423206)
1. Discrete-state models identify pathway specific B cell states across diseases and infections at single-cell resolution. Kassis G; Palshikar MG; Hilchey SP; Zand MS; Thakar J J Theor Biol; 2024 Apr; 583():111769. PubMed ID: 38423206 [TBL] [Abstract][Full Text] [Related]
2. An efficient algorithm for computing attractors of synchronous and asynchronous Boolean networks. Zheng D; Yang G; Li X; Wang Z; Liu F; He L PLoS One; 2013; 8(4):e60593. PubMed ID: 23585840 [TBL] [Abstract][Full Text] [Related]
3. Common Attractors in Multiple Boolean Networks. Cao Y; Pi W; Lin CY; Munzner U; Ohtomo M; Akutsu T IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(5):2862-2873. PubMed ID: 37079419 [TBL] [Abstract][Full Text] [Related]
4. Detection of attractors of large Boolean networks via exhaustive enumeration of appropriate subspaces of the state space. Berntenis N; Ebeling M BMC Bioinformatics; 2013 Dec; 14():361. PubMed ID: 24330355 [TBL] [Abstract][Full Text] [Related]
5. An efficient algorithm for identifying primary phenotype attractors of a large-scale Boolean network. Choo SM; Cho KH BMC Syst Biol; 2016 Oct; 10(1):95. PubMed ID: 27717349 [TBL] [Abstract][Full Text] [Related]
6. Boolean modeling reveals that cyclic attractors in macrophage polarization serve as reservoirs of states to balance external perturbations from the tumor microenvironment. de León UA; Vázquez-Jiménez A; Matadamas-Guzmán M; Resendis-Antonio O Front Immunol; 2022; 13():1012730. PubMed ID: 36544764 [TBL] [Abstract][Full Text] [Related]
7. Causal structure of oscillations in gene regulatory networks: Boolean analysis of ordinary differential equation attractors. Sun M; Cheng X; Socolar JE Chaos; 2013 Jun; 23(2):025104. PubMed ID: 23822502 [TBL] [Abstract][Full Text] [Related]
8. Data-Driven Modeling of Breast Cancer Tumors Using Boolean Networks. Sgariglia D; Conforte AJ; Pedreira CE; Vidal de Carvalho LA; Carneiro FRG; Carels N; Silva FABD Front Big Data; 2021; 4():656395. PubMed ID: 34746770 [TBL] [Abstract][Full Text] [Related]
9. An efficient algorithm for computing fixed length attractors based on bounded model checking in synchronous Boolean networks with biochemical applications. Li XY; Yang GW; Zheng DS; Guo WS; Hung WN Genet Mol Res; 2015 Apr; 14(2):4238-44. PubMed ID: 25966195 [TBL] [Abstract][Full Text] [Related]
10. Optimizing therapeutic targets for breast cancer using boolean network models. Sgariglia D; Carneiro FRG; Vidal de Carvalho LA; Pedreira CE; Carels N; da Silva FAB Comput Biol Chem; 2024 Apr; 109():108022. PubMed ID: 38350182 [TBL] [Abstract][Full Text] [Related]
12. An Algorithm for Finding the Singleton Attractors and Pre-Images in Strong-Inhibition Boolean Networks. He Z; Zhan M; Liu S; Fang Z; Yao C PLoS One; 2016; 11(11):e0166906. PubMed ID: 27861624 [TBL] [Abstract][Full Text] [Related]
14. An in silico target identification using Boolean network attractors: Avoiding pathological phenotypes. Poret A; Boissel JP C R Biol; 2014 Dec; 337(12):661-78. PubMed ID: 25433558 [TBL] [Abstract][Full Text] [Related]
15. Stochastic Boolean networks: an efficient approach to modeling gene regulatory networks. Liang J; Han J BMC Syst Biol; 2012 Aug; 6():113. PubMed ID: 22929591 [TBL] [Abstract][Full Text] [Related]
16. Distribution and enumeration of attractors in probabilistic Boolean networks. Hayashida M; Tamura T; Akutsu T; Ching WK; Cong Y IET Syst Biol; 2009 Nov; 3(6):465-74. PubMed ID: 19947772 [TBL] [Abstract][Full Text] [Related]
17. A framework to find the logic backbone of a biological network. Maheshwari P; Albert R BMC Syst Biol; 2017 Dec; 11(1):122. PubMed ID: 29212542 [TBL] [Abstract][Full Text] [Related]
18. Analysis of discrete bioregulatory networks using symbolic steady states. Siebert H Bull Math Biol; 2011 Apr; 73(4):873-98. PubMed ID: 21170598 [TBL] [Abstract][Full Text] [Related]
19. General method to find the attractors of discrete dynamic models of biological systems. Gan X; Albert R Phys Rev E; 2018 Apr; 97(4-1):042308. PubMed ID: 29758614 [TBL] [Abstract][Full Text] [Related]
20. Counting and classifying attractors in high dimensional dynamical systems. Bagley RJ; Glass L J Theor Biol; 1996 Dec; 183(3):269-84. PubMed ID: 9015450 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]