BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38423499)

  • 1. Analysing the performance of the NARX model for forecasting the water level in the Chikugo River estuary, Japan.
    Vidyalashmi K; Chandana L M; Nandana JS; Azhikodan G; Priya KL; Yokoyama K; Paramasivam SK
    Environ Res; 2024 Jun; 251(Pt 1):118531. PubMed ID: 38423499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of salinity intrusion in the James and Chickahominy Rivers as a result of simulated sea-level rise in Chesapeake Bay, East Coast, USA.
    Rice KC; Hong B; Shen J
    J Environ Manage; 2012 Nov; 111():61-9. PubMed ID: 22820747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A nonlinear autoregressive exogenous (NARX) model to predict nitrate concentration in rivers.
    Di Nunno F; Race M; Granata F
    Environ Sci Pollut Res Int; 2022 Jun; 29(27):40623-40642. PubMed ID: 35083679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of climate change on freshwater resources in a heterogeneous coastal aquifer of Bremerhaven, Germany: A three-dimensional modeling study.
    Yang J; Graf T; Ptak T
    J Contam Hydrol; 2015; 177-178():107-21. PubMed ID: 25889797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytoplankton habitats and size distribution during a neap-spring transition in the highly turbid macrotidal Chikugo River estuary.
    Nwe LW; Yokoyama K; Azhikodan G
    Sci Total Environ; 2022 Dec; 850():157810. PubMed ID: 35932862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of the climate change impacts on fecal coliform contamination in a tidal estuarine system.
    Liu WC; Chan WT
    Environ Monit Assess; 2015 Dec; 187(12):728. PubMed ID: 26545372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impacts of groundwater dynamics around a macro-tidal river on agricultural soil salinity.
    Tackley HA; Kurylyk BL; Lake CB
    Sci Total Environ; 2024 Jun; 927():172344. PubMed ID: 38608891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intra-annual variations in phytoplankton biomass and its composition in the tropical estuary: Influence of river discharge.
    Bharathi MD; Sarma VVSS; Ramaneswari K
    Mar Pollut Bull; 2018 Apr; 129(1):14-25. PubMed ID: 29680531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uncertainty in estuarine extreme water level predictions due to surge-tide interaction.
    Lyddon C; Brown JM; Leonardi N; Plater AJ
    PLoS One; 2018; 13(10):e0206200. PubMed ID: 30365514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Saltwater Intrusion Function and Preliminary Application in the Yangtze River Estuary, China.
    Xu Z; Ma J; Hu Y
    Int J Environ Res Public Health; 2019 Jan; 16(1):. PubMed ID: 30621202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The regular pattern and underlying mechanisms of seawater intrusion in the Modaomen channel in the Pearl River Estuary of China.
    Yang M; Tang G; Jiang T; Chen T; Chen X
    Environ Sci Pollut Res Int; 2021 Nov; 28(43):60818-60832. PubMed ID: 34169415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonlinear autoregressive neural networks with external inputs for forecasting of typhoon inundation level.
    Ouyang HT
    Environ Monit Assess; 2017 Aug; 189(8):376. PubMed ID: 28681325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Response of the turbidity maximum zone in the Yangtze River Estuary due to human activities during the dry season.
    Chen X; Shen Z; Yang Y
    Environ Sci Pollut Res Int; 2016 Sep; 23(18):18466-81. PubMed ID: 27287491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of River Discharge on the Transport of the Saltwater Group from the North Branch in the Yangtze River Estuary.
    Xu Z; Ma J; Wang H; Zhao J
    Int J Environ Res Public Health; 2020 Dec; 17(24):. PubMed ID: 33302420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polycyclic Aromatic Hydrocarbons in the Estuaries of Two Rivers of the Sea of Japan.
    Chizhova T; Koudryashova Y; Prokuda N; Tishchenko P; Hayakawa K
    Int J Environ Res Public Health; 2020 Aug; 17(17):. PubMed ID: 32824924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Viral dispersal in the coastal zone: A method to quantify water quality risk.
    Robins PE; Farkas K; Cooper D; Malham SK; Jones DL
    Environ Int; 2019 May; 126():430-442. PubMed ID: 30836310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of the upper river, the estuarine region, and the adjacent sea to the heavy metal pollution in the Yangtze Estuary.
    Yin S; Wu Y; Xu W; Li Y; Shen Z; Feng C
    Chemosphere; 2016 Jul; 155():564-572. PubMed ID: 27155472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estuarine fish communities respond to climate variability over both river and ocean basins.
    Feyrer F; Cloern JE; Brown LR; Fish MA; Hieb KA; Baxter RD
    Glob Chang Biol; 2015 Oct; 21(10):3608-19. PubMed ID: 25966973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatiotemporal variability in salinity and hydraulic relationship with salt intrusion in the tidal reaches of the Minjiang River, Fujian Province, China.
    Xie R; Pang Y; Luo B; Li J; Wu C; Zheng Y; Sun Q; Zhang P; Wang F
    Environ Sci Pollut Res Int; 2017 Apr; 24(12):11847-11855. PubMed ID: 28315052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A changing estuary: Understanding historical patterns in salinity and fecal coliform levels in the May River, SC.
    Soueidan J; Warren A; Pearson M; Montie EW
    Mar Pollut Bull; 2021 Jul; 168():112384. PubMed ID: 33901906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.