BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38423994)

  • 1. From Serendipity to Precision: Decoding the Enigma of Rearrangement in Scholl-Type Reactions for Programmable Cyclization.
    Ponugoti N; Maddala S; Venkatakrishnan P
    J Org Chem; 2024 Mar; 89(6):4185-4190. PubMed ID: 38423994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rearrangements in Scholl Reaction.
    Ponugoti N; Parthasarathy V
    Chemistry; 2022 Mar; 28(17):e202103530. PubMed ID: 34910835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scholl-Type Cycloheptatriene Ring Closure of 1,4,9,12-Tetraarylfenestrindanes: Reactivity and Selectivity in the Construction of Fenestrane-Based Polyaromatic Saddles.
    Wong WS; Lau WW; Li Y; Liu Z; Kuck D; Chow HF
    Chemistry; 2020 Apr; 26(19):4310-4319. PubMed ID: 31821641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Scholl Reaction as a Powerful Tool for Synthesis of Curved Polycyclic Aromatics.
    Zhang Y; Pun SH; Miao Q
    Chem Rev; 2022 Sep; 122(18):14554-14593. PubMed ID: 35960873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scholl Cyclizations of Aryl Naphthalenes: Rearrangement Precedes Cyclization.
    Skraba-Joiner SL; McLaughlin EC; Ajaz A; Thamatam R; Johnson RP
    J Org Chem; 2015 Oct; 80(19):9578-83. PubMed ID: 26340531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Twisted polycyclic arenes by intramolecular Scholl reactions of C3-symmetric precursors.
    Pradhan A; Dechambenoit P; Bock H; Durola F
    J Org Chem; 2013 Mar; 78(6):2266-74. PubMed ID: 23374076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of Zigzag Carbon Nanobelts through Scholl Reactions.
    Xia Z; Pun SH; Chen H; Miao Q
    Angew Chem Int Ed Engl; 2021 Apr; 60(18):10311-10318. PubMed ID: 33599364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of Azulene-Embedded Nanographene: Naphthalene to Azulene Rearrangement During the Scholl Reaction.
    Han Y; Xue Z; Li G; Gu Y; Ni Y; Dong S; Chi C
    Angew Chem Int Ed Engl; 2020 Jun; 59(23):9026-9031. PubMed ID: 32096589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlling the Scholl reaction.
    King BT; Kroulík J; Robertson CR; Rempala P; Hilton CL; Korinek JD; Gortari LM
    J Org Chem; 2007 Mar; 72(7):2279-88. PubMed ID: 17326684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile oxidative rearrangements using hypervalent iodine reagents.
    Singh FV; Rehbein J; Wirth T
    ChemistryOpen; 2012 Dec; 1(6):245-50. PubMed ID: 24551514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Twisted Nanographene Consisting of 96 Carbon Atoms.
    Cheung KY; Chan CK; Liu Z; Miao Q
    Angew Chem Int Ed Engl; 2017 Jul; 56(31):9003-9007. PubMed ID: 28471075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of Ring Strain on the Formation of Rearrangement vs Cyclization Isotwistane Products in the Acyl Radical Reaction of Bicyclo[2.2.2]octanone.
    Chen CM; Lin SK; Hsieh CT; Reddy JS; Teoh YN; Cheng MJ; Hsieh HP
    Org Lett; 2023 Nov; 25(43):7757-7762. PubMed ID: 37738398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing the arenium-ion (protontransfer) versus the cation-radical (electron transfer) mechanism of Scholl reaction using DDQ as oxidant.
    Zhai L; Shukla R; Wadumethrige SH; Rathore R
    J Org Chem; 2010 Jul; 75(14):4748-60. PubMed ID: 20575516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidative transformation to naphthodithiophene and thia[7]helicenes by intramolecular Scholl reaction of substituted 1,2-bis(2-thienyl)benzene precursors.
    Waghray D; de Vet C; Karypidou K; Dehaen W
    J Org Chem; 2013 Nov; 78(22):11147-54. PubMed ID: 24147631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electronic Control of the Scholl Reaction: Selective Synthesis of Spiro vs Helical Nanographenes.
    Izquierdo-García P; Fernández-García JM; Perles J; Fernández I; Martín N
    Angew Chem Int Ed Engl; 2023 Feb; 62(7):e202215655. PubMed ID: 36495528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Curved graphene nanoribbons derived from tetrahydropyrene-based polyphenylenes
    Obermann S; Zheng W; Melidonie J; Böckmann S; Osella S; Arisnabarreta N; Guerrero-León LA; Hennersdorf F; Beljonne D; Weigand JJ; Bonn M; De Feyter S; Hansen MR; Wang HI; Ma J; Feng X
    Chem Sci; 2023 Aug; 14(32):8607-8614. PubMed ID: 37592977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unsymmetric Twofold Scholl Cyclization of a 5,11-Dinaphthyltetracene: Selective Formation of Pentagonal and Hexagonal Rings via Dicationic Intermediates.
    Chaolumen ; Murata M; Wakamiya A; Murata Y
    Angew Chem Int Ed Engl; 2017 Apr; 56(18):5082-5086. PubMed ID: 28370944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyclization of Tetraaryl-Substituted Benzoquinones and Hydroquinones through the Scholl Reaction.
    Ye Q; Zhang Z; Png ZM; Neo WT; Lin T; Zeng H; Xu H; Xu J
    J Org Chem; 2016 Oct; 81(19):9219-9226. PubMed ID: 27648729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New Twists in Nazarov Cyclization Chemistry.
    Frontier AJ; Hernandez JJ
    Acc Chem Res; 2020 Sep; 53(9):1822-1832. PubMed ID: 32790284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring the Acid-Catalyzed Reactions of 10,11-Epoxy-Dibenzo[
    Hsu CY; Zheng CJ; Wu YY; Fan WH; Lin CH
    ACS Omega; 2022 Jun; 7(25):21505-21527. PubMed ID: 35785270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.