These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 38424072)

  • 1. Liquid lens based holographic camera for real 3D scene hologram acquisition using end-to-end physical model-driven network.
    Wang D; Li ZS; Zheng Y; Zhao YR; Liu C; Xu JB; Zheng YW; Huang Q; Chang CL; Zhang DW; Zhuang SL; Wang QH
    Light Sci Appl; 2024 Feb; 13(1):62. PubMed ID: 38424072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. End-to-end real-time holographic display based on real-time capture of real scenes.
    Zhang S; Ma H; Yang Y; Zhao W; Liu J
    Opt Lett; 2023 Apr; 48(7):1850-1853. PubMed ID: 37221782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real scene acquisition and holographic near-eye display system based on a zoom industrial endoscope.
    Liu C; Zheng Y; Li NN; Hou YH; Jiang Z; Wang QH
    Opt Express; 2022 Aug; 30(18):33170-33181. PubMed ID: 36242363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From picture to 3D hologram: end-to-end learning of real-time 3D photorealistic hologram generation from 2D image input.
    Chang C; Dai B; Zhu D; Li J; Xia J; Zhang D; Hou L; Zhuang S
    Opt Lett; 2023 Feb; 48(4):851-854. PubMed ID: 36790957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Holographic augmented reality based on three-dimensional volumetric imaging for a photorealistic scene.
    Kim KJ; Park BS; Kim JK; Kim DW; Seo YH
    Opt Express; 2020 Nov; 28(24):35972-35985. PubMed ID: 33379702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-speed real 3D scene acquisition and 3D holographic reconstruction system based on ultrafast optical axial scanning.
    Dong J; Li Z; Liu X; Zhong W; Wang G; Liu Q; Song X
    Opt Express; 2023 Jun; 31(13):21721-21730. PubMed ID: 37381262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implementation of the real-virtual 3D scene-fused full-parallax holographic stereogram.
    Yan X; Wang C; Liu Y; Wang X; Liu X; Jing T; Chen S; Li P; Jiang X
    Opt Express; 2021 Aug; 29(16):25979-26003. PubMed ID: 34614913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superpixel-based sub-hologram method for real-time color three-dimensional holographic display with large size.
    Ma H; Wei C; Wei J; Han Y; Pi D; Yang Y; Zhao W; Wang Y; Liu J
    Opt Express; 2022 Aug; 30(17):31287-31297. PubMed ID: 36242214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comprehensive deep learning model for 3D color holography.
    Yolalmaz A; Yüce E
    Sci Rep; 2022 Feb; 12(1):2487. PubMed ID: 35169161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A framework for holographic scene representation and image synthesis.
    Ziegler R; Kaufmann P; Gross M
    IEEE Trans Vis Comput Graph; 2007; 13(2):403-15. PubMed ID: 17218755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wide-viewing holographic stereogram based on self-interference incoherent digital holography.
    Kim Y; Hong K; Yeom HJ; Choi K; Park J; Min SW
    Opt Express; 2022 Apr; 30(8):12760-12774. PubMed ID: 35472906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 360-degree color hologram generation for real 3D objects.
    Chang EY; Choi J; Lee S; Kwon S; Yoo J; Park M; Kim J
    Appl Opt; 2018 Jan; 57(1):A91-A100. PubMed ID: 29328134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. All-optical diffractive neural networked terahertz hologram.
    Liao D; Chan KF; Chan CH; Zhang Q; Wang H
    Opt Lett; 2020 May; 45(10):2906-2909. PubMed ID: 32412498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep learning-based incoherent holographic camera enabling acquisition of real-world holograms for holographic streaming system.
    Yu H; Kim Y; Yang D; Seo W; Kim Y; Hong JY; Song H; Sung G; Sung Y; Min SW; Lee HS
    Nat Commun; 2023 Jun; 14(1):3534. PubMed ID: 37316495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time realistic computer-generated hologram with accurate depth precision and a large depth range.
    Zhong C; Sang X; Yan B; Li H; Chen D; Qin X
    Opt Express; 2022 Oct; 30(22):40087-40100. PubMed ID: 36298947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Holo-U
    Yang T; Lu Z
    Sensors (Basel); 2024 Aug; 24(17):. PubMed ID: 39275416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Depth-Enhanced Holographic Super Multi-View Maxwellian Display Based on Variable Filter Aperture.
    Tu K; Chen Q; Wang Z; Lv G; Feng Q
    Micromachines (Basel); 2023 May; 14(6):. PubMed ID: 37374752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast numerical generation and encryption of computer-generated Fresnel holograms.
    Tsang PW; Poon TC; Cheung KW
    Appl Opt; 2011 Mar; 50(7):B46-52. PubMed ID: 21364711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Color multilayer holographic near-eye augmented reality display.
    Velez-Zea A; Barrera-Ramírez JF
    Sci Rep; 2023 Jun; 13(1):10651. PubMed ID: 37391489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Holographic three-dimensional display and hologram calculation based on liquid crystal on silicon device [invited].
    Li J; Tu HY; Yeh WC; Gui J; Cheng CJ
    Appl Opt; 2014 Sep; 53(27):G222-31. PubMed ID: 25322134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.