BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 38424097)

  • 1. Brain tumor segmentation using synthetic MR images - A comparison of GANs and diffusion models.
    Usman Akbar M; Larsson M; Blystad I; Eklund A
    Sci Data; 2024 Feb; 11(1):259. PubMed ID: 38424097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesizing anonymized and labeled TOF-MRA patches for brain vessel segmentation using generative adversarial networks.
    Kossen T; Subramaniam P; Madai VI; Hennemuth A; Hildebrand K; Hilbert A; Sobesky J; Livne M; Galinovic I; Khalil AA; Fiebach JB; Frey D
    Comput Biol Med; 2021 Apr; 131():104254. PubMed ID: 33618105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generating 3D TOF-MRA volumes and segmentation labels using generative adversarial networks.
    Subramaniam P; Kossen T; Ritter K; Hennemuth A; Hildebrand K; Hilbert A; Sobesky J; Livne M; Galinovic I; Khalil AA; Fiebach JB; Frey D; Madai VI
    Med Image Anal; 2022 May; 78():102396. PubMed ID: 35231850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward Sharing Brain Images: Differentially Private TOF-MRA Images With Segmentation Labels Using Generative Adversarial Networks.
    Kossen T; Hirzel MA; Madai VI; Boenisch F; Hennemuth A; Hildebrand K; Pokutta S; Sharma K; Hilbert A; Sobesky J; Galinovic I; Khalil AA; Fiebach JB; Frey D
    Front Artif Intell; 2022; 5():813842. PubMed ID: 35586223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the usability of synthetic data for improving the robustness of deep learning-based segmentation of cardiac magnetic resonance images.
    Al Khalil Y; Amirrajab S; Lorenz C; Weese J; Pluim J; Breeuwer M
    Med Image Anal; 2023 Feb; 84():102688. PubMed ID: 36493702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utility of deep learning networks for the generation of artificial cardiac magnetic resonance images in congenital heart disease.
    Diller GP; Vahle J; Radke R; Vidal MLB; Fischer AJ; Bauer UMM; Sarikouch S; Berger F; Beerbaum P; Baumgartner H; Orwat S;
    BMC Med Imaging; 2020 Oct; 20(1):113. PubMed ID: 33032536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active Cell Appearance Model Induced Generative Adversarial Networks for Annotation-Efficient Cell Segmentation and Identification on Adaptive Optics Retinal Images.
    Liu J; Shen C; Aguilera N; Cukras C; Hufnagel RB; Zein WM; Liu T; Tam J
    IEEE Trans Med Imaging; 2021 Oct; 40(10):2820-2831. PubMed ID: 33507868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CosSIF: Cosine similarity-based image filtering to overcome low inter-class variation in synthetic medical image datasets.
    Islam M; Zunair H; Mohammed N
    Comput Biol Med; 2024 Apr; 172():108317. PubMed ID: 38492455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combating COVID-19 Using Generative Adversarial Networks and Artificial Intelligence for Medical Images: Scoping Review.
    Ali H; Shah Z
    JMIR Med Inform; 2022 Jun; 10(6):e37365. PubMed ID: 35709336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthetic Generation of 3D Microscopy Images using Generative Adversarial Networks.
    Narotamo H; Ouarne M; Franco CA; Silveira M
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():549-552. PubMed ID: 36086569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generative Adversarial Networks Can Create High Quality Artificial Prostate Cancer Magnetic Resonance Images.
    Xu IRL; Van Booven DJ; Goberdhan S; Breto A; Porto J; Alhusseini M; Algohary A; Stoyanova R; Punnen S; Mahne A; Arora H
    J Pers Med; 2023 Mar; 13(3):. PubMed ID: 36983728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using a generative adversarial network to generate synthetic MRI images for multi-class automatic segmentation of brain tumors.
    Raut P; Baldini G; Schöneck M; Caldeira L
    Front Radiol; 2023; 3():1336902. PubMed ID: 38304344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Can Generative Adversarial Networks help to overcome the limited data problem in segmentation?
    Heilemann G; Matthewman M; Kuess P; Goldner G; Widder J; Georg D; Zimmermann L
    Z Med Phys; 2022 Aug; 32(3):361-368. PubMed ID: 34930685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deepfakes in Ophthalmology: Applications and Realism of Synthetic Retinal Images from Generative Adversarial Networks.
    Chen JS; Coyner AS; Chan RVP; Hartnett ME; Moshfeghi DM; Owen LA; Kalpathy-Cramer J; Chiang MF; Campbell JP
    Ophthalmol Sci; 2021 Dec; 1(4):100079. PubMed ID: 36246951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced cell segmentation with limited annotated data using generative adversarial networks.
    Zargari A; Mashhadi N; Shariati SA
    bioRxiv; 2023 Jul; ():. PubMed ID: 37546774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A multimodal comparison of latent denoising diffusion probabilistic models and generative adversarial networks for medical image synthesis.
    Müller-Franzes G; Niehues JM; Khader F; Arasteh ST; Haarburger C; Kuhl C; Wang T; Han T; Nolte T; Nebelung S; Kather JN; Truhn D
    Sci Rep; 2023 Jul; 13(1):12098. PubMed ID: 37495660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Label-informed cardiac magnetic resonance image synthesis through conditional generative adversarial networks.
    Amirrajab S; Al Khalil Y; Lorenz C; Weese J; Pluim J; Breeuwer M
    Comput Med Imaging Graph; 2022 Oct; 101():102123. PubMed ID: 36174308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GANs for Medical Image Synthesis: An Empirical Study.
    Skandarani Y; Jodoin PM; Lalande A
    J Imaging; 2023 Mar; 9(3):. PubMed ID: 36976120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patient-specific placental vessel segmentation with limited data.
    Sarwin G; Lussi J; Gervasoni S; Moehrlen U; Ochsenbein N; Nelson BJ
    J Robot Surg; 2024 Jun; 18(1):237. PubMed ID: 38833204
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.