BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 38424097)

  • 21. CosSIF: Cosine similarity-based image filtering to overcome low inter-class variation in synthetic medical image datasets.
    Islam M; Zunair H; Mohammed N
    Comput Biol Med; 2024 Apr; 172():108317. PubMed ID: 38492455
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Generating Synthetic Labeled Data From Existing Anatomical Models: An Example With Echocardiography Segmentation.
    Gilbert A; Marciniak M; Rodero C; Lamata P; Samset E; Mcleod K
    IEEE Trans Med Imaging; 2021 Oct; 40(10):2783-2794. PubMed ID: 33444134
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High resolution histopathology image generation and segmentation through adversarial training.
    Li W; Li J; Polson J; Wang Z; Speier W; Arnold C
    Med Image Anal; 2022 Jan; 75():102251. PubMed ID: 34814059
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Generative Adversarial Networks in Digital Histopathology: Current Applications, Limitations, Ethical Considerations, and Future Directions.
    Alajaji SA; Khoury ZH; Elgharib M; Saeed M; Ahmed ARH; Khan MB; Tavares T; Jessri M; Puche AC; Hoorfar H; Stojanov I; Sciubba JJ; Sultan AS
    Mod Pathol; 2024 Jan; 37(1):100369. PubMed ID: 37890670
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Combating COVID-19 Using Generative Adversarial Networks and Artificial Intelligence for Medical Images: Scoping Review.
    Ali H; Shah Z
    JMIR Med Inform; 2022 Jun; 10(6):e37365. PubMed ID: 35709336
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Using deep learning to generate synthetic B-mode musculoskeletal ultrasound images.
    Cronin NJ; Finni T; Seynnes O
    Comput Methods Programs Biomed; 2020 Nov; 196():105583. PubMed ID: 32544777
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 2S-BUSGAN: A Novel Generative Adversarial Network for Realistic Breast Ultrasound Image with Corresponding Tumor Contour Based on Small Datasets.
    Luo J; Zhang H; Zhuang Y; Han L; Chen K; Hua Z; Li C; Lin J
    Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896706
    [TBL] [Abstract][Full Text] [Related]  

  • 28. SinGAN-Seg: Synthetic training data generation for medical image segmentation.
    Thambawita V; Salehi P; Sheshkal SA; Hicks SA; Hammer HL; Parasa S; Lange T; Halvorsen P; Riegler MA
    PLoS One; 2022; 17(5):e0267976. PubMed ID: 35500005
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Using a generative adversarial network to generate synthetic MRI images for multi-class automatic segmentation of brain tumors.
    Raut P; Baldini G; Schöneck M; Caldeira L
    Front Radiol; 2023; 3():1336902. PubMed ID: 38304344
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A survey on generative adversarial networks for imbalance problems in computer vision tasks.
    Sampath V; Maurtua I; Aguilar Martín JJ; Gutierrez A
    J Big Data; 2021; 8(1):27. PubMed ID: 33552840
    [TBL] [Abstract][Full Text] [Related]  

  • 31. C
    Zhang Z; Li Y; Shin BS
    Med Phys; 2022 Oct; 49(10):6491-6504. PubMed ID: 35981348
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Generative Adversarial Networks Can Create High Quality Artificial Prostate Cancer Magnetic Resonance Images.
    Xu IRL; Van Booven DJ; Goberdhan S; Breto A; Porto J; Alhusseini M; Algohary A; Stoyanova R; Punnen S; Mahne A; Arora H
    J Pers Med; 2023 Mar; 13(3):. PubMed ID: 36983728
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multi-Modal Brain Tumor Data Completion Based on Reconstruction Consistency Loss.
    Jiang Y; Zhang S; Chi J
    J Digit Imaging; 2023 Aug; 36(4):1794-1807. PubMed ID: 36856903
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Creating High Fidelity Synthetic Pelvis Radiographs Using Generative Adversarial Networks: Unlocking the Potential of Deep Learning Models Without Patient Privacy Concerns.
    Khosravi B; Rouzrokh P; Mickley JP; Faghani S; Larson AN; Garner HW; Howe BM; Erickson BJ; Taunton MJ; Wyles CC
    J Arthroplasty; 2023 Oct; 38(10):2037-2043.e1. PubMed ID: 36535448
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deepfakes in Ophthalmology: Applications and Realism of Synthetic Retinal Images from Generative Adversarial Networks.
    Chen JS; Coyner AS; Chan RVP; Hartnett ME; Moshfeghi DM; Owen LA; Kalpathy-Cramer J; Chiang MF; Campbell JP
    Ophthalmol Sci; 2021 Dec; 1(4):100079. PubMed ID: 36246951
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Brain Tumor Classification Using a Combination of Variational Autoencoders and Generative Adversarial Networks.
    Ahmad B; Sun J; You Q; Palade V; Mao Z
    Biomedicines; 2022 Jan; 10(2):. PubMed ID: 35203433
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cross-modality (CT-MRI) prior augmented deep learning for robust lung tumor segmentation from small MR datasets.
    Jiang J; Hu YC; Tyagi N; Zhang P; Rimner A; Deasy JO; Veeraraghavan H
    Med Phys; 2019 Oct; 46(10):4392-4404. PubMed ID: 31274206
    [TBL] [Abstract][Full Text] [Related]  

  • 38. GANs for Medical Image Synthesis: An Empirical Study.
    Skandarani Y; Jodoin PM; Lalande A
    J Imaging; 2023 Mar; 9(3):. PubMed ID: 36976120
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 3D conditional generative adversarial networks for high-quality PET image estimation at low dose.
    Wang Y; Yu B; Wang L; Zu C; Lalush DS; Lin W; Wu X; Zhou J; Shen D; Zhou L
    Neuroimage; 2018 Jul; 174():550-562. PubMed ID: 29571715
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.