These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 38424154)

  • 1. Sequestration within peptide coacervates improves the fluorescence intensity, kinetics, and limits of detection of dye-based DNA biosensors.
    Green CM; Sementa D; Mathur D; Melinger JS; Deshpande P; Elbaum-Garfinkle S; Medintz IL; Ulijn RV; Díaz SA
    Commun Chem; 2024 Feb; 7(1):49. PubMed ID: 38424154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endoproteolysis of Oligopeptide-Based Coacervates for Enzymatic Modeling.
    Jin Z; Ling C; Yim W; Chang YC; He T; Li K; Zhou J; Cheng Y; Li Y; Yeung J; Wang R; Fajtová P; Amer L; Mattoussi H; O'Donoghue AJ; Jokerst JV
    ACS Nano; 2023 Sep; 17(17):16980-16992. PubMed ID: 37579082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox-responsive peptide-based complex coacervates as delivery vehicles with controlled release of proteinous drugs.
    Wang J; Abbas M; Huang Y; Wang J; Li Y
    Commun Chem; 2023 Nov; 6(1):243. PubMed ID: 37935871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrospinnable, Neutral Coacervates for Facile Preparation of Solid Phenolic Bioadhesives.
    Kim JS; Hwang H; Lee D; Lee H
    ACS Appl Mater Interfaces; 2021 Aug; 13(32):37989-37996. PubMed ID: 34346669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradation and hemostatic properties of polyphosphate coacervates.
    Momeni A; Filiaggi MJ
    Acta Biomater; 2016 Sep; 41():328-41. PubMed ID: 27265150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peptide-based coacervates in therapeutic applications.
    Ma L; Fang X; Wang C
    Front Bioeng Biotechnol; 2022; 10():1100365. PubMed ID: 36686257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-Property Relationships Governing Membrane-Penetrating Behaviour of Complex Coacervates.
    Lu T; Hu X; van Haren MHI; Spruijt E; Huck WTS
    Small; 2023 Sep; 19(38):e2303138. PubMed ID: 37218010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peptide-based coacervates as biomimetic protocells.
    Abbas M; Lipiński WP; Wang J; Spruijt E
    Chem Soc Rev; 2021 Mar; 50(6):3690-3705. PubMed ID: 33616129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polyamine/Nucleotide Coacervates Provide Strong Compartmentalization of Mg²⁺, Nucleotides, and RNA.
    Frankel EA; Bevilacqua PC; Keating CD
    Langmuir; 2016 Mar; 32(8):2041-9. PubMed ID: 26844692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Encapsulation Using Plant Proteins: Thermodynamics and Kinetics of Wetting for Simple Zein Coacervates.
    Li X; Erni P; van der Gucht J; de Vries R
    ACS Appl Mater Interfaces; 2020 Apr; 12(13):15802-15809. PubMed ID: 32119509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coacervates: Recent developments as nanostructure delivery platforms for therapeutic biomolecules.
    Ban E; Kim A
    Int J Pharm; 2022 Aug; 624():122058. PubMed ID: 35905931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complex Coacervates as a Promising Vehicle for mRNA Delivery: A Comprehensive Review of Recent Advances and Challenges.
    Forenzo C; Larsen J
    Mol Pharm; 2023 Sep; 20(9):4387-4403. PubMed ID: 37561647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding How Coacervates Drive Reversible Small Molecule Reactions to Promote Molecular Complexity.
    Jacobs MI; Jira ER; Schroeder CM
    Langmuir; 2021 Dec; 37(49):14323-14335. PubMed ID: 34856104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluoroalcohol - Induced coacervates for selective enrichment and extraction of hydrophobic proteins.
    Koolivand A; Clayton S; Rion H; Oloumi A; O'Brien A; Khaledi MG
    J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Apr; 1083():180-188. PubMed ID: 29549741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A facile DNA coacervate platform for engineering wetting, engulfment, fusion and transient behavior.
    Liu W; Deng J; Song S; Sethi S; Walther A
    Commun Chem; 2024 May; 7(1):100. PubMed ID: 38693272
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Polypeptide Complex Coacervate Microenvironment on Protonation of a Guest Molecule.
    Choi S; Knoerdel AR; Sing CE; Keating CD
    J Phys Chem B; 2023 Jul; 127(26):5978-5991. PubMed ID: 37350455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase Behavior and Electrochemical Properties of Highly Asymmetric Redox Coacervates.
    Coria-Oriundo LL; Debais G; Apuzzo E; Herrera SE; Ceolín M; Azzaroni O; Battaglini F; Tagliazucchi M
    J Phys Chem B; 2023 Sep; 127(35):7636-7647. PubMed ID: 37639479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interfacial energy of polypeptide complex coacervates measured via capillary adhesion.
    Priftis D; Farina R; Tirrell M
    Langmuir; 2012 Jun; 28(23):8721-9. PubMed ID: 22578030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diffusivity of whey protein and gum arabic in their coacervates.
    Weinbreck F; Rollema HS; Tromp RH; de Kruif CG
    Langmuir; 2004 Jul; 20(15):6389-95. PubMed ID: 15248727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interfacial properties of polymeric complex coacervates from simulation and theory.
    Lytle TK; Salazar AJ; Sing CE
    J Chem Phys; 2018 Oct; 149(16):163315. PubMed ID: 30384702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.