These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38424205)

  • 1. Continuous adiabatic frequency conversion for FMCW-LiDAR.
    Mrokon A; Oehler J; Breunig I
    Sci Rep; 2024 Feb; 14(1):4990. PubMed ID: 38424205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electro-optically tunable single-frequency lasing from neodymium-doped lithium niobate microresonators.
    Minet Y; Herr SJ; Breunig I; Zappe H; Buse K
    Opt Express; 2022 Aug; 30(16):28335-28344. PubMed ID: 36299031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Massively parallel FMCW lidar with cm range resolution using an electro-optic frequency comb.
    He B; Zhang C; Yang J; Chen N; He X; Tao J; Zhang Z; Chu T; Chen Z; Xie X
    Opt Lett; 2023 Jul; 48(13):3621-3624. PubMed ID: 37390197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pockels-effect-based adiabatic frequency conversion in ultrahigh-Q microresonators.
    Minet Y; Reis L; Szabados J; Werner CS; Zappe H; Buse K; Breunig I
    Opt Express; 2020 Feb; 28(3):2939-2947. PubMed ID: 32121971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrically induced adiabatic frequency conversion in an integrated lithium niobate ring resonator.
    He X; Cortes-Herrera L; Opong-Mensah K; Zhang Y; Song M; Agrawal GP; Cardenas J
    Opt Lett; 2022 Nov; 47(22):5849-5852. PubMed ID: 37219118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-noise frequency-agile photonic integrated lasers for coherent ranging.
    Lihachev G; Riemensberger J; Weng W; Liu J; Tian H; Siddharth A; Snigirev V; Shadymov V; Voloshin A; Wang RN; He J; Bhave SA; Kippenberg TJ
    Nat Commun; 2022 Jun; 13(1):3522. PubMed ID: 35725718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrafast tunable lasers using lithium niobate integrated photonics.
    Snigirev V; Riedhauser A; Lihachev G; Churaev M; Riemensberger J; Wang RN; Siddharth A; Huang G; Möhl C; Popoff Y; Drechsler U; Caimi D; Hönl S; Liu J; Seidler P; Kippenberg TJ
    Nature; 2023 Mar; 615(7952):411-417. PubMed ID: 36922611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate.
    Witmer JD; Valery JA; Arrangoiz-Arriola P; Sarabalis CJ; Hill JT; Safavi-Naeini AH
    Sci Rep; 2017 Apr; 7():46313. PubMed ID: 28406177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interpolation linearization predistortion technology for FMCW LiDAR.
    Chen H; Zhao L; Hu L; Chen L; Zhang B; Luo Y; Liang X; Gan L
    Appl Opt; 2024 Feb; 63(6):1538-1545. PubMed ID: 38437366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Novel Method of Measuring Instantaneous Frequency of an Ultrafast Frequency Modulated Continuous-Wave Laser.
    Yang J; Yang T; Wang Z; Jia D; Ge C
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32660043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frequency Modulation Control of an FMCW LiDAR Using a Frequency-to-Voltage Converter.
    Lee J; Hong J; Park K
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultralinear 140-GHz FMCW signal generation with optical parametric wideband frequency modulation enabling 1-mm range resolution.
    Ishimura S; Kan T; Takahashi H; Tsuritani T; Suzuki M
    Opt Express; 2023 Apr; 31(8):13384-13392. PubMed ID: 37157477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid integrated ultralow-linewidth and fast-chirped laser for FMCW LiDAR.
    Tang L; Li L; Li J; Chen M
    Opt Express; 2022 Aug; 30(17):30420-30429. PubMed ID: 36242146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Role of Millimeter-Waves in the Distance Measurement Accuracy of an FMCW Radar Sensor.
    Bhutani A; Marahrens S; Gehringer M; Göttel B; Pauli M; Zwick T
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31547328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly-time-resolved FMCW LiDAR with synchronously-nonlinearity-corrected acquisition for dynamic locomotion.
    Sun C; Chen Z; Ye S; Lin J; Shi W; Li B; Teng F; Li X; Zhang A
    Opt Express; 2023 Feb; 31(5):7774-7788. PubMed ID: 36859902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable single-frequency lasing in a microresonator.
    Herr SJ; Buse K; Breunig I
    Opt Express; 2019 May; 27(11):15351-15358. PubMed ID: 31163732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Broadband dual-chirp FMCW laser source based on DSB-SC modulation and cascaded FWM.
    Xiao Z; Wu Z; Xia G
    Opt Express; 2023 Aug; 31(18):29925-29933. PubMed ID: 37710781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frequency-modulated continuous-wave lidar using I/Q modulator for simplified heterodyne detection.
    Gao S; Hui R
    Opt Lett; 2012 Jun; 37(11):2022-4. PubMed ID: 22660108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electro-optically tunable optical delay line with a continuous tuning range of ∼220 fs in thin-film lithium niobate.
    Song L; Chen J; Wu R; Zheng Y; Liu Z; Wang G; Sun C; Wang M; Cheng Y
    Opt Lett; 2023 May; 48(9):2261-2264. PubMed ID: 37126249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electro-optically tunable microring resonators on lithium niobate.
    Wang TJ; Chu CH; Lin CY
    Opt Lett; 2007 Oct; 32(19):2777-9. PubMed ID: 17909570
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.