These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38424207)

  • 1. Microstructure reconstruction of 2D/3D random materials via diffusion-based deep generative models.
    Lyu X; Ren X
    Sci Rep; 2024 Feb; 14(1):5041. PubMed ID: 38424207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Freeze-Casting of Alumina and Permeability Analysis Based on a 3D Microstructure Reconstructed Using Generative Adversarial Networks.
    Li X; Duan L; Zhou S; Liu X; Yao Z; Yan Z
    Materials (Basel); 2024 May; 17(10):. PubMed ID: 38793499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep-learning-based porous media microstructure quantitative characterization and reconstruction method.
    Huang Y; Xiang Z; Qian M
    Phys Rev E; 2022 Jan; 105(1-2):015308. PubMed ID: 35193256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Three-Dimensional Microstructure Reconstruction Framework for Permeable Pavement Analysis Based on 3D-IWGAN with Enhanced Gradient Penalty.
    Feri LE; Ahn J; Lutfillohonov S; Kwon J
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34064274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-resolution MRI synthesis using a data-driven framework with denoising diffusion probabilistic modeling.
    Chang CW; Peng J; Safari M; Salari E; Pan S; Roper J; Qiu RLJ; Gao Y; Shu HK; Mao H; Yang X
    Phys Med Biol; 2024 Feb; 69(4):. PubMed ID: 38241726
    [No Abstract]   [Full Text] [Related]  

  • 6. Generating 3D images of material microstructures from a single 2D image: a denoising diffusion approach.
    Phan J; Sarmad M; Ruspini L; Kiss G; Lindseth F
    Sci Rep; 2024 Mar; 14(1):6498. PubMed ID: 38499588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Text-to-Microstructure Generation Using Generative Deep Learning.
    Zheng X; Watanabe I; Paik J; Li J; Guo X; Naito M
    Small; 2024 May; ():e2402685. PubMed ID: 38770745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stochastic characterization and reconstruction of material microstructures for establishment of process-structure-property linkage using the deep generative model.
    Noguchi S; Inoue J
    Phys Rev E; 2021 Aug; 104(2-2):025302. PubMed ID: 34525667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Counterfactual MRI Generation with Denoising Diffusion Models for Interpretable Alzheimer's Disease Effect Detection.
    Dhinagar NJ; Thomopoulos SI; Laltoo E; Thompson PM
    bioRxiv; 2024 Feb; ():. PubMed ID: 38370616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fractal microstructure effects on effective gas diffusivity of a nanoporous medium based on pore-scale numerical simulations with lattice Boltzmann method.
    Hu B; Wang JG
    Phys Rev E; 2021 Dec; 104(6-2):065304. PubMed ID: 35030825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A data-driven framework for permeability prediction of natural porous rocks via microstructural characterization and pore-scale simulation.
    Fu J; Wang M; Chen B; Wang J; Xiao D; Luo M; Evans B
    Eng Comput; 2023 May; ():1-32. PubMed ID: 37362240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient 3D porous microstructure reconstruction via Gaussian random field and hybrid optimization.
    Jiang Z; Chen W; Burkhart C
    J Microsc; 2013 Nov; 252(2):135-48. PubMed ID: 23961976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesizing controlled microstructures of porous media using generative adversarial networks and reinforcement learning.
    Nguyen PCH; Vlassis NN; Bahmani B; Sun W; Udaykumar HS; Baek SS
    Sci Rep; 2022 May; 12(1):9034. PubMed ID: 35641549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Denoising diffusion-based MRI to CT image translation enables automated spinal segmentation.
    Graf R; Schmitt J; Schlaeger S; Möller HK; Sideri-Lampretsa V; Sekuboyina A; Krieg SM; Wiestler B; Menze B; Rueckert D; Kirschke JS
    Eur Radiol Exp; 2023 Nov; 7(1):70. PubMed ID: 37957426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional reconstruction of granular porous media based on deep generative models.
    Yin R; Teng Q; Wu X; Zhang F; Xiong S
    Phys Rev E; 2023 Nov; 108(5-2):055303. PubMed ID: 38115524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstruction of porous media from extremely limited information using conditional generative adversarial networks.
    Feng J; He X; Teng Q; Ren C; Chen H; Li Y
    Phys Rev E; 2019 Sep; 100(3-1):033308. PubMed ID: 31639909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A material decomposition method for dual-energy CT via dual interactive Wasserstein generative adversarial networks.
    Shi Z; Li H; Cao Q; Wang Z; Cheng M
    Med Phys; 2021 Jun; 48(6):2891-2905. PubMed ID: 33704786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting permeability via statistical learning on higher-order microstructural information.
    Röding M; Ma Z; Torquato S
    Sci Rep; 2020 Sep; 10(1):15239. PubMed ID: 32943677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast inverse design of microstructures via generative invariance networks.
    Lee XY; Waite JR; Yang CH; Pokuri BSS; Joshi A; Balu A; Hegde C; Ganapathysubramanian B; Sarkar S
    Nat Comput Sci; 2021 Mar; 1(3):229-238. PubMed ID: 38183201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploration of the Underlying Space in Microscopic Images via Deep Learning for Additively Manufactured Piezoceramics.
    Yang W; Wang Z; Yang T; He L; Song X; Liu Y; Chen L
    ACS Appl Mater Interfaces; 2021 Nov; 13(45):53439-53453. PubMed ID: 34469098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.