BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

417 related articles for article (PubMed ID: 38424304)

  • 1. Protein lipidation in cancer: mechanisms, dysregulation and emerging drug targets.
    Tate EW; Soday L; de la Lastra AL; Wang M; Lin H
    Nat Rev Cancer; 2024 Apr; 24(4):240-260. PubMed ID: 38424304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Small-Molecule Modulation of Protein Lipidation: From Chemical Probes to Therapeutics.
    Wang Z; Ying J; Zhang X; Miao C; Xiao Y; Zou J; Chen B
    Chembiochem; 2023 Jul; 24(14):e202300071. PubMed ID: 37059689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting post-translational modification of transcription factors as cancer therapy.
    Qian M; Yan F; Yuan T; Yang B; He Q; Zhu H
    Drug Discov Today; 2020 Aug; 25(8):1502-1512. PubMed ID: 32540433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pharmacological Inhibition of Protein Lipidation.
    Ganesan L; Levental I
    J Membr Biol; 2015 Dec; 248(6):929-41. PubMed ID: 26280397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical tools for understanding protein lipidation in eukaryotes.
    Charron G; Wilson J; Hang HC
    Curr Opin Chem Biol; 2009 Oct; 13(4):382-91. PubMed ID: 19699139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Post-translational lipid modifications in Plasmodium parasites.
    Counihan NA; Chernih HC; de Koning-Ward TF
    Curr Opin Microbiol; 2022 Oct; 69():102196. PubMed ID: 36037636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nothing Is Yet Set in (Hi)stone: Novel Post-Translational Modifications Regulating Chromatin Function.
    Chan JC; Maze I
    Trends Biochem Sci; 2020 Oct; 45(10):829-844. PubMed ID: 32498971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Post-Translational Modifications of G Protein-Coupled Receptors Control Cellular Signaling Dynamics in Space and Time.
    Patwardhan A; Cheng N; Trejo J
    Pharmacol Rev; 2021 Jan; 73(1):120-151. PubMed ID: 33268549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global profiling of protein lipidation using chemical proteomic technologies.
    Tate EW; Kalesh KA; Lanyon-Hogg T; Storck EM; Thinon E
    Curr Opin Chem Biol; 2015 Feb; 24():48-57. PubMed ID: 25461723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aberrant post-translational modifications in endosomal trafficking are potential therapeutic targets to avert therapy resistance in solid cancers: Dysregulation of PTM-regulated endosomal interactions presents an opportunity to block oncogenic signalling from multiple receptors by targeting common trafficking pathways: Dysregulation of PTM-regulated endosomal interactions presents an opportunity to block oncogenic signalling from multiple receptors by targeting common trafficking pathways.
    Onglao W; Khew-Goodall Y; Belle L; Lonic A
    Bioessays; 2022 Feb; 44(2):e2100192. PubMed ID: 34913509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrative Chemical Biology Approaches to Deciphering the Histone Code: A Problem-Driven Journey.
    Li X; Li XD
    Acc Chem Res; 2021 Oct; 54(19):3734-3747. PubMed ID: 34553920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The posttranslational modifications of Hippo-YAP pathway in cancer.
    Yan F; Qian M; He Q; Zhu H; Yang B
    Biochim Biophys Acta Gen Subj; 2020 Jan; 1864(1):129397. PubMed ID: 31306710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioorthogonal chemical reporters for analyzing protein lipidation and lipid trafficking.
    Hang HC; Wilson JP; Charron G
    Acc Chem Res; 2011 Sep; 44(9):699-708. PubMed ID: 21675729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteome-wide analysis of protein lipidation using chemical probes: in-gel fluorescence visualization, identification and quantification of N-myristoylation, N- and S-acylation, O-cholesterylation, S-farnesylation and S-geranylgeranylation.
    Kallemeijn WW; Lanyon-Hogg T; Panyain N; Goya Grocin A; Ciepla P; Morales-Sanfrutos J; Tate EW
    Nat Protoc; 2021 Nov; 16(11):5083-5122. PubMed ID: 34707257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Post-Translational Modifications That Drive Prostate Cancer Progression.
    Samaržija I
    Biomolecules; 2021 Feb; 11(2):. PubMed ID: 33572160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deconvoluting the biology and druggability of protein lipidation using chemical proteomics.
    Losada de la Lastra A; Hassan S; Tate EW
    Curr Opin Chem Biol; 2021 Feb; 60():97-112. PubMed ID: 33221680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Roles of protein post-translational modifications in glucose and lipid metabolism: mechanisms and perspectives.
    Yang YH; Wen R; Yang N; Zhang TN; Liu CF
    Mol Med; 2023 Jul; 29(1):93. PubMed ID: 37415097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein Lipidation in Cell Signaling and Diseases: Function, Regulation, and Therapeutic Opportunities.
    Chen B; Sun Y; Niu J; Jarugumilli GK; Wu X
    Cell Chem Biol; 2018 Jul; 25(7):817-831. PubMed ID: 29861273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pathological implication of protein post-translational modifications in cancer.
    Pan S; Chen R
    Mol Aspects Med; 2022 Aug; 86():101097. PubMed ID: 35400524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Posttranslational Modifications of Lipid-Activated Nuclear Receptors: Focus on Metabolism.
    Becares N; Gage MC; Pineda-Torra I
    Endocrinology; 2017 Feb; 158(2):213-225. PubMed ID: 27925773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.