These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 38424663)
1. Single-Atom Cu Nanozyme-Loaded Bone Scaffolds for Ferroptosis-Synergized Mild Photothermal Therapy in Osteosarcoma Treatment. Yan Z; Wu X; Tan W; Yan J; Zhou J; Chen S; Miao J; Cheng J; Shuai C; Deng Y Adv Healthc Mater; 2024 Jun; 13(15):e2304595. PubMed ID: 38424663 [TBL] [Abstract][Full Text] [Related]
2. Multi-responsive cascade enzyme-like catalytic nanoassembly for ferroptosis amplification and nanozyme-assisted mild photothermal therapy. Gu D; Zhu L; Wang Z; Zhi X; Liu M; Ge S; Sun B; Liang X; Wu H; Wang Y Acta Biomater; 2024 Oct; 187():366-380. PubMed ID: 39209133 [TBL] [Abstract][Full Text] [Related]
3. Single-Atom Pd Nanozyme for Ferroptosis-Boosted Mild-Temperature Photothermal Therapy. Chang M; Hou Z; Wang M; Yang C; Wang R; Li F; Liu D; Peng T; Li C; Lin J Angew Chem Int Ed Engl; 2021 Jun; 60(23):12971-12979. PubMed ID: 33772996 [TBL] [Abstract][Full Text] [Related]
4. Photothermal Catalytic Reduction and Bone Tissue Engineering Towards a Three-in-One Therapy Strategy for Osteosarcoma. Lu H; Li Z; Duan Z; Liao Y; Liu K; Zhang Y; Fan L; Xu T; Yang D; Wang S; Fu Y; Xiang H; Chen Y; Li G Adv Mater; 2024 Oct; 36(40):e2408016. PubMed ID: 39165073 [TBL] [Abstract][Full Text] [Related]
5. Nanoengineered 3D-printing scaffolds prepared by metal-coordination self-assembly for hyperthermia-catalytic osteosarcoma therapy and bone regeneration. Huang B; Li G; Cao L; Wu S; Zhang Y; Li Z; Zhou F; Xu K; Wang G; Su J J Colloid Interface Sci; 2024 Oct; 672():724-735. PubMed ID: 38870763 [TBL] [Abstract][Full Text] [Related]
6. 3D Printed Wesselsite Nanosheets Functionalized Scaffold Facilitates NIR-II Photothermal Therapy and Vascularized Bone Regeneration. Yang C; Ma H; Wang Z; Younis MR; Liu C; Wu C; Luo Y; Huang P Adv Sci (Weinh); 2021 Oct; 8(20):e2100894. PubMed ID: 34396718 [TBL] [Abstract][Full Text] [Related]
7. 3D-printed scaffolds with bioactive elements-induced photothermal effect for bone tumor therapy. Liu Y; Li T; Ma H; Zhai D; Deng C; Wang J; Zhuo S; Chang J; Wu C Acta Biomater; 2018 Jun; 73():531-546. PubMed ID: 29656075 [TBL] [Abstract][Full Text] [Related]
8. In situ hydrogel based on Cu-Fe Zhang Y; Zhang N; Xing J; Sun Y; Jin X; Shen C; Cheng L; Wang Y; Wang X Biomaterials; 2024 Dec; 311():122675. PubMed ID: 38943822 [TBL] [Abstract][Full Text] [Related]
9. Magnetic Mesoporous Calcium Sillicate/Chitosan Porous Scaffolds for Enhanced Bone Regeneration and Photothermal-Chemotherapy of Osteosarcoma. Yang F; Lu J; Ke Q; Peng X; Guo Y; Xie X Sci Rep; 2018 May; 8(1):7345. PubMed ID: 29743489 [TBL] [Abstract][Full Text] [Related]
10. 3D printing of metal-organic framework nanosheets-structured scaffolds with tumor therapy and bone construction. Dang W; Ma B; Li B; Huan Z; Ma N; Zhu H; Chang J; Xiao Y; Wu C Biofabrication; 2020 Jan; 12(2):025005. PubMed ID: 31756727 [TBL] [Abstract][Full Text] [Related]
11. Cu Single Atom Nanozyme Based High-Efficiency Mild Photothermal Therapy through Cellular Metabolic Regulation. Chang M; Hou Z; Wang M; Wen D; Li C; Liu Y; Zhao Y; Lin J Angew Chem Int Ed Engl; 2022 Dec; 61(50):e202209245. PubMed ID: 36264713 [TBL] [Abstract][Full Text] [Related]
12. Engineering Bimetallic Polyphenol for Mild Photothermal Osteosarcoma Therapy and Immune Microenvironment Remodeling by Activating Pyroptosis and cGAS-STING Pathway. Liu K; Zan P; Li Z; Lu H; Liu P; Zhang L; Wang H; Ma X; Chen F; Zhao J; Sun W Adv Healthc Mater; 2024 Sep; 13(22):e2400623. PubMed ID: 38691766 [TBL] [Abstract][Full Text] [Related]
13. 3D-Printed Magnesium Peroxide-Incorporated Scaffolds with Sustained Oxygen Release and Enhanced Photothermal Performance for Osteosarcoma Multimodal Treatments. Haixia X; Peng Z; Jiezhao L; Huiling G; Xie C; Yihan W; Yanglei J; Li J; Wang C; Wenning X; Lixin Z; Liu C ACS Appl Mater Interfaces; 2024 Feb; 16(8):9626-9639. PubMed ID: 38372238 [TBL] [Abstract][Full Text] [Related]
14. Biomimetic bone-periosteum scaffold for spatiotemporal regulated innervated bone regeneration and therapy of osteosarcoma. Xu Y; Xu C; Song H; Feng X; Ma L; Zhang X; Li G; Mu C; Tan L; Zhang Z; Liu Z; Luo Z; Yang C J Nanobiotechnology; 2024 May; 22(1):250. PubMed ID: 38750519 [TBL] [Abstract][Full Text] [Related]
15. Bioorthogonal Cu Single-Atom Nanozyme for Synergistic Nanocatalytic Therapy, Photothermal Therapy, Cuproptosis and Immunotherapy. Wu L; Lin H; Cao X; Tong Q; Yang F; Miao Y; Ye D; Fan Q Angew Chem Int Ed Engl; 2024 Jul; 63(27):e202405937. PubMed ID: 38654446 [TBL] [Abstract][Full Text] [Related]
16. Mild-Photothermal Effect Induced High Efficiency Ferroptosis-Boosted-Cuproptosis Based on Cu Chen W; Xie W; Gao Z; Lin C; Tan M; Zhang Y; Hou Z Adv Sci (Weinh); 2023 Nov; 10(33):e2303694. PubMed ID: 37822154 [TBL] [Abstract][Full Text] [Related]
17. MgSiO Mao J; Bi J; Sun Z; Wang L ACS Appl Mater Interfaces; 2024 Jul; 16(27):34669-34683. PubMed ID: 38946103 [TBL] [Abstract][Full Text] [Related]
18. Time-Sequential and Multi-Functional 3D Printed MgO Li C; Zhang W; Nie Y; Du X; Huang C; Li L; Long J; Wang X; Tong W; Qin L; Lai Y Adv Mater; 2024 Aug; 36(34):e2308875. PubMed ID: 38091500 [TBL] [Abstract][Full Text] [Related]
19. Casticin induces ferroptosis in human osteosarcoma cells through Fe Jiwa H; Xie Z; Qu X; Xu J; Huang Y; Huang X; Zhang J; Wang N; Li N; Luo J; Luo X Biochem Pharmacol; 2024 Aug; 226():116346. PubMed ID: 38852641 [TBL] [Abstract][Full Text] [Related]
20. Low-Temperature Photothermal Therapy Platform Based on Pd Nanozyme-Modified Hydrogenated TiO Tian X; Chen Z; Yang L; Liu Q; Zheng Z; Gao Z; Wang X; Lin C; Xie W; Wan Y; Yang J; Hou Z ACS Appl Mater Interfaces; 2023 Sep; 15(38):44631-44640. PubMed ID: 37706663 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]