These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38425281)

  • 41. Using FRAP to Quantify Changes in Transcription Factor Dynamics After Cell Stimulation: Cell Culture, FRAP, Data Analysis, and Visualization.
    Govindaraj K; Post JN
    Methods Mol Biol; 2021; 2221():109-139. PubMed ID: 32979202
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Role of three-dimensional bleach distribution in confocal and two-photon fluorescence recovery after photobleaching experiments.
    Mazza D; Cella F; Vicidomini G; Krol S; Diaspro A
    Appl Opt; 2007 Oct; 46(30):7401-11. PubMed ID: 17952174
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Regression Analysis of Confocal FRAP and its Application to Diffusion in Membranes.
    Kang M
    J Fluoresc; 2022 May; 32(3):1031-1038. PubMed ID: 35254627
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Characterization of Cell Boundary and Confocal Effects Improves Quantitative FRAP Analysis.
    Kingsley JL; Bibeau JP; Mousavi SI; Unsal C; Chen Z; Huang X; Vidali L; Tüzel E
    Biophys J; 2018 Mar; 114(5):1153-1164. PubMed ID: 29539401
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Monitoring and quantifying dynamic physiological processes in live neurons using fluorescence recovery after photobleaching.
    Staras K; Mikulincer D; Gitler D
    J Neurochem; 2013 Jul; 126(2):213-22. PubMed ID: 23496032
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Diffusion and binding analyzed with combined point FRAP and FCS.
    Im KB; Schmidt U; Kang MS; Lee JY; Bestvater F; Wachsmuth M
    Cytometry A; 2013 Sep; 83(9):876-89. PubMed ID: 23847177
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Line FRAP with the confocal laser scanning microscope for diffusion measurements in small regions of 3-D samples.
    Braeckmans K; Remaut K; Vandenbroucke RE; Lucas B; De Smedt SC; Demeester J
    Biophys J; 2007 Mar; 92(6):2172-83. PubMed ID: 17208970
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fluorescence recovery after photobleaching on the confocal laser-scanning microscope: generalized model without restriction on the size of the photobleached disk.
    Smisdom N; Braeckmans K; Deschout H; vandeVen M; Rigo JM; De Smedt SC; Ameloot M
    J Biomed Opt; 2011 Apr; 16(4):046021. PubMed ID: 21529089
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Use of Fluorescence Recovery After Photobleaching (FRAP) to Measure In Vivo Dynamics of Cell Junction-Associated Polarity Proteins.
    Warrington SJ; Strutt H; Strutt D
    Methods Mol Biol; 2022; 2438():1-30. PubMed ID: 35147932
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Anomalous photobleaching in fluorescence recovery after photobleaching measurements due to excitation saturation--a case study for fluorescein.
    Braeckmans K; Stubbe BG; Remaut K; Demeester J; De Smedt SC
    J Biomed Opt; 2006; 11(4):044013. PubMed ID: 16965170
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fluorescence recovery after photobleaching: the case of anomalous diffusion.
    Lubelski A; Klafter J
    Biophys J; 2008 Jun; 94(12):4646-53. PubMed ID: 18326658
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Molecular viewing of actin polymerizing actions and beyond: combination analysis of single-molecule speckle microscopy with modeling, FRAP and s-FDAP (sequential fluorescence decay after photoactivation).
    Watanabe N; Yamashiro S; Vavylonis D; Kiuchi T
    Dev Growth Differ; 2013 May; 55(4):508-14. PubMed ID: 23621590
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Recent applications of fluorescence recovery after photobleaching (FRAP) to membrane bio-macromolecules.
    Rayan G; Guet JE; Taulier N; Pincet F; Urbach W
    Sensors (Basel); 2010; 10(6):5927-48. PubMed ID: 22219695
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Determination of δ-opioid receptor molecules mobility in living cells plasma membrane by novel method of FRAP analysis.
    Janáček J; Brejchová J; Svoboda P
    Biochim Biophys Acta Biomembr; 2019 Jul; 1861(7):1346-1354. PubMed ID: 31071299
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Parameter importance in FRAP acquisition and analysis: a simulation approach.
    Mai J; Trump S; Lehmann I; Attinger S
    Biophys J; 2013 May; 104(9):2089-97. PubMed ID: 23663852
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fluorescence recovery after photobleaching: application to nuclear proteins.
    Houtsmuller AB
    Adv Biochem Eng Biotechnol; 2005; 95():177-99. PubMed ID: 16080269
    [TBL] [Abstract][Full Text] [Related]  

  • 57. FRAP analysis: accounting for bleaching during image capture.
    Wu J; Shekhar N; Lele PP; Lele TP
    PLoS One; 2012; 7(8):e42854. PubMed ID: 22912750
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fluorescence Recovery After Photo-Bleaching (FRAP) and Fluorescence Loss in Photo-Bleaching (FLIP) Experiments to Study Protein Dynamics During Budding Yeast Cell Division.
    Bolognesi A; Sliwa-Gonzalez A; Prasad R; Barral Y
    Methods Mol Biol; 2016; 1369():25-44. PubMed ID: 26519303
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fluorescence Recovery after Merging a Droplet to Measure the Two-dimensional Diffusion of a Phospholipid Monolayer.
    Jeong DW; Kim K; Choi MC; Choi SQ
    J Vis Exp; 2015 Oct; (105):e53376. PubMed ID: 26556128
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Minimizing the impact of photoswitching of fluorescent proteins on FRAP analysis.
    Mueller F; Morisaki T; Mazza D; McNally JG
    Biophys J; 2012 Apr; 102(7):1656-65. PubMed ID: 22500766
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.