BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 38425297)

  • 1. Toward Sound Localization Testing in Virtual Reality to Aid in the Screening of Auditory Processing Disorders.
    Ramírez M; Arend JM; von Gablenz P; Liesefeld HR; Pörschmann C
    Trends Hear; 2024; 28():23312165241235463. PubMed ID: 38425297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feasibility of Virtual Reality-Based Auditory Localization Training With Binaurally Recorded Auditory Stimuli for Patients With Single-Sided Deafness.
    Shim L; Lee J; Han JH; Jeon H; Hong SK; Lee HJ
    Clin Exp Otorhinolaryngol; 2023 Aug; 16(3):217-224. PubMed ID: 37080730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Applying Virtual Reality to Audiovisual Speech Perception Tasks in Children.
    Salanger M; Lewis D; Vallier T; McDermott T; Dergan A
    Am J Audiol; 2020 Jun; 29(2):244-258. PubMed ID: 32250641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reaching to sounds in virtual reality: A multisensory-motor approach to promote adaptation to altered auditory cues.
    Valzolgher C; Verdelet G; Salemme R; Lombardi L; Gaveau V; Farné A; Pavani F
    Neuropsychologia; 2020 Dec; 149():107665. PubMed ID: 33130161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial Hearing Difficulties in Reaching Space in Bilateral Cochlear Implant Children Improve With Head Movements.
    Coudert A; Gaveau V; Gatel J; Verdelet G; Salemme R; Farne A; Pavani F; Truy E
    Ear Hear; 2022; 43(1):192-205. PubMed ID: 34225320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sound source localization with varying amount of visual information in virtual reality.
    Ahrens A; Lund KD; Marschall M; Dau T
    PLoS One; 2019; 14(3):e0214603. PubMed ID: 30925174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Effect of Sound Localization on Auditory-Only and Audiovisual Speech Recognition in a Simulated Multitalker Environment.
    Sheffield SW; Wheeler HJ; Brungart DS; Bernstein JGW
    Trends Hear; 2023; 27():23312165231186040. PubMed ID: 37415497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Virtual Reality Lab: Realization and Application of Virtual Sound Environments.
    Hohmann V; Paluch R; Krueger M; Meis M; Grimm G
    Ear Hear; 2020; 41 Suppl 1(Suppl 1):31S-38S. PubMed ID: 33105257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Extended Binaural Real-Time Auralization System With an Interface to Research Hearing Aids for Experiments on Subjects With Hearing Loss.
    Pausch F; Aspöck L; Vorländer M; Fels J
    Trends Hear; 2018; 22():2331216518800871. PubMed ID: 30322347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Compact Two-Loudspeaker Virtual Sound Reproduction System for Clinical Testing of Spatial Hearing With Hearing-Assistive Devices.
    Hamdan EC; Fletcher MD
    Front Neurosci; 2021; 15():725127. PubMed ID: 35153652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial hearing training in virtual reality with simulated asymmetric hearing loss.
    Valzolgher C; Capra S; Sum K; Finos L; Pavani F; Picinali L
    Sci Rep; 2024 Jan; 14(1):2469. PubMed ID: 38291126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Usability of Individualized Head-Related Transfer Functions in Virtual Reality: Empirical Study With Perceptual Attributes in Sagittal Plane Sound Localization.
    Jenny C; Reuter C
    JMIR Serious Games; 2020 Sep; 8(3):e17576. PubMed ID: 32897232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Examining the Auditory Selective Attention Switch in a Child-Suited Virtual Reality Classroom Environment.
    Breuer C; Loh K; Leist L; Fremerey S; Raake A; Klatte M; Fels J
    Int J Environ Res Public Health; 2022 Dec; 19(24):. PubMed ID: 36554463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Training spatial hearing in unilateral cochlear implant users through reaching to sounds in virtual reality.
    Valzolgher C; Bouzaid S; Grenouillet S; Gatel J; Ratenet L; Murenu F; Verdelet G; Salemme R; Gaveau V; Coudert A; Hermann R; Truy E; Farnè A; Pavani F
    Eur Arch Otorhinolaryngol; 2023 Aug; 280(8):3661-3672. PubMed ID: 36905419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sound localization in web-based 3D environments.
    Rajguru C; Brianza G; Memoli G
    Sci Rep; 2022 Jul; 12(1):12107. PubMed ID: 35840617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A test of virtual auditory localization.
    Besing JM; Koehnke J
    Ear Hear; 1995 Apr; 16(2):220-9. PubMed ID: 7789673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Virtual reality simulation training for health professions trainees in gastrointestinal endoscopy.
    Khan R; Plahouras J; Johnston BC; Scaffidi MA; Grover SC; Walsh CM
    Cochrane Database Syst Rev; 2018 Aug; 8(8):CD008237. PubMed ID: 30117156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sound localization, sound lateralization, and binaural masking level differences in young children with normal hearing.
    Van Deun L; van Wieringen A; Van den Bogaert T; Scherf F; Offeciers FE; Van de Heyning PH; Desloovere C; Dhooge IJ; Deggouj N; De Raeve L; Wouters J
    Ear Hear; 2009 Apr; 30(2):178-90. PubMed ID: 19194296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatially incongruent sounds affect visual localization in virtual environments.
    Liu D; Rau PP
    Atten Percept Psychophys; 2020 May; 82(4):2067-2075. PubMed ID: 31900858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial rehabilitation using virtual auditory space training paradigm in individuals with sensorineural hearing impairment.
    Nisha KV; Uppunda AK; Kumar RT
    Front Neurosci; 2022; 16():1080398. PubMed ID: 36733923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.