These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 38425380)
1. All-Inorganic Hydrothermally Processed Semitransparent Sb Kumar P; Eriksson M; Kharytonau DS; You S; Natile MM; Vomiero A ACS Appl Energy Mater; 2024 Feb; 7(4):1421-1432. PubMed ID: 38425380 [TBL] [Abstract][Full Text] [Related]
2. Additive Engineering of the CuSCN Hole Transport Layer for High-Performance Perovskite Semitransparent Solar Cells. Sun J; Zhang N; Wu J; Yang W; He H; Huang M; Zeng Y; Yang X; Ying Z; Qin G; Shou C; Sheng J; Ye J ACS Appl Mater Interfaces; 2022 Nov; 14(46):52223-52232. PubMed ID: 36377745 [TBL] [Abstract][Full Text] [Related]
3. A Low-Temperature Solution-Processed CuSCN/Polymer Hole Transporting Layer Enables High Efficiency for Organic Solar Cells. Dong J; Guo J; Wang X; Dong P; Wang Z; Zhou Y; Miao Y; Zhao B; Hao Y; Wang H; Xu B; Yin S ACS Appl Mater Interfaces; 2020 Oct; 12(41):46373-46380. PubMed ID: 32945159 [TBL] [Abstract][Full Text] [Related]
4. Trap and transfer. two-step hole injection across the Sb2S3/CuSCN interface in solid-state solar cells. Christians JA; Kamat PV ACS Nano; 2013 Sep; 7(9):7967-74. PubMed ID: 23977822 [TBL] [Abstract][Full Text] [Related]
5. Thermal Stability of CuSCN Hole Conductor-Based Perovskite Solar Cells. Jung M; Kim YC; Jeon NJ; Yang WS; Seo J; Noh JH; Il Seok S ChemSusChem; 2016 Sep; 9(18):2592-2596. PubMed ID: 27611720 [TBL] [Abstract][Full Text] [Related]
6. Highly efficient inverted solar cells based on perovskite grown nanostructures mediated by CuSCN. Xi Q; Gao G; Zhou H; Zhao Y; Wu C; Wang L; Guo P; Xu J Nanoscale; 2017 May; 9(18):6136-6144. PubMed ID: 28447686 [TBL] [Abstract][Full Text] [Related]
7. Improvement of Thermal Stability and Photoelectric Performance of Cs Liu Y; Li B; Xu J; Yao J Nanomaterials (Basel); 2024 Apr; 14(9):. PubMed ID: 38727336 [TBL] [Abstract][Full Text] [Related]
8. One-step electrodeposition of CuSCN/CuI nanocomposite and its hole transport-ability in inverted planar perovskite solar cells. Ramachandran K; Jeganathan C; Subbian K Nanotechnology; 2021 May; 32(32):. PubMed ID: 33951622 [TBL] [Abstract][Full Text] [Related]
9. Semitransparent Sb Eensalu JS; Katerski A; Kärber E; Weinhardt L; Blum M; Heske C; Yang W; Oja Acik I; Krunks M Beilstein J Nanotechnol; 2019; 10():2396-2409. PubMed ID: 31886116 [TBL] [Abstract][Full Text] [Related]
10. Determining Out-of-Plane Hole Mobility in CuSCN via the Time-of-Flight Technique To Elucidate Its Function in Perovskite Solar Cells. Mohan L; Ratnasingham SR; Panidi J; Daboczi M; Kim JS; Anthopoulos TD; Briscoe J; McLachlan MA; Kreouzis T ACS Appl Mater Interfaces; 2021 Aug; 13(32):38499-38507. PubMed ID: 34365787 [TBL] [Abstract][Full Text] [Related]
11. CuSCN-Based Inverted Planar Perovskite Solar Cell with an Average PCE of 15.6%. Ye S; Sun W; Li Y; Yan W; Peng H; Bian Z; Liu Z; Huang C Nano Lett; 2015 Jun; 15(6):3723-8. PubMed ID: 25938881 [TBL] [Abstract][Full Text] [Related]
12. Efficient planar Sb2S3 solar cells using a low-temperature solution-processed tin oxide electron conductor. Lei H; Yang G; Guo Y; Xiong L; Qin P; Dai X; Zheng X; Ke W; Tao H; Chen Z; Li B; Fang G Phys Chem Chem Phys; 2016 Jun; 18(24):16436-43. PubMed ID: 27264190 [TBL] [Abstract][Full Text] [Related]
14. Progress on the Synthesis and Application of CuSCN Inorganic Hole Transport Material in Perovskite Solar Cells. Matebese F; Taziwa R; Mutukwa D Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30572658 [No Abstract] [Full Text] [Related]
15. Effects of Antisolvent Treatment on Copper(I) Thiocyanate Hole Transport Layer in n-i-p Perovskite Solar Cells. Jung S; Choi S; Shin W; Oh H; Kim N; Kim S; Kim N; Kim K; Lee H Molecules; 2024 Sep; 29(18):. PubMed ID: 39339435 [TBL] [Abstract][Full Text] [Related]
16. Quasi-Vertically-Orientated Antimony Sulfide Inorganic Thin-Film Solar Cells Achieved by Vapor Transport Deposition. Zeng Y; Sun K; Huang J; Nielsen MP; Ji F; Sha C; Yuan S; Zhang X; Yan C; Liu X; Deng H; Lai Y; Seidel J; Ekins-Daukes N; Liu F; Song H; Green M; Hao X ACS Appl Mater Interfaces; 2020 May; 12(20):22825-22834. PubMed ID: 32326702 [TBL] [Abstract][Full Text] [Related]
17. Solution-Processed All-inorganic Planar Heterojunction Solar Cells by Employing In Situ Grown Interfacial Layer with Dual Functions: Complementary Absorption and Selective Extraction of Photogenerated Holes. Chen W; Cao W; Liu R; Dong C; Wan Z; Chen J; Ashebir GY; Wang M ACS Omega; 2021 Mar; 6(10):6973-6980. PubMed ID: 33748611 [TBL] [Abstract][Full Text] [Related]
18. Zn(O,S) Buffer Layer for in Situ Hydrothermal Sb Lin W; Guo WT; Yao L; Li J; Lin L; Zhang JM; Chen S; Chen G ACS Appl Mater Interfaces; 2021 Sep; 13(38):45726-45735. PubMed ID: 34520174 [TBL] [Abstract][Full Text] [Related]
20. Methylammonium Compensation Effects in MAPbI Kim G; Kwon N; Lee D; Kim M; Kim M; Lee Y; Kim W; Hyeon D; Kim B; Jeong MS; Hong J; Yang J ACS Appl Mater Interfaces; 2022 Feb; 14(4):5203-5210. PubMed ID: 35050584 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]