These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 38425536)

  • 1.
    Besisa NHA; Yoon KS; Yamauchi M
    Chem Sci; 2024 Feb; 15(9):3240-3248. PubMed ID: 38425536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface Reorganization of Transition Metal Dichalcogenide Nanoflowers for Efficient Electrochemical Coenzyme Regeneration.
    Williams N; Hahn K; Goodman R; Chen X; Gu J
    ACS Appl Mater Interfaces; 2023 Jan; 15(3):3925-3933. PubMed ID: 36629401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ regeneration of NADH via lipoamide dehydrogenase-catalyzed electron transfer reaction evidenced by spectroelectrochemistry.
    Tam TK; Chen B; Lei C; Liu J
    Bioelectrochemistry; 2012 Aug; 86():92-6. PubMed ID: 22497727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of electrode potential, pH and NAD
    Aamer E; Thöming J; Baune M; Reimer N; Dringen R; Romero M; Bösing I
    Sci Rep; 2022 Sep; 12(1):16380. PubMed ID: 36180530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nicotinamide adenine dinucleotide hydrogen regeneration in a microbial electrosynthesis system by Enterobacter aerogenes.
    Barin R; Biria D; Ali Asadollahi M
    Bioelectrochemistry; 2023 Feb; 149():108309. PubMed ID: 36283190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Product Distribution of Steady-State and Pulsed Electrochemical Regeneration of 1,4-NADH and Integration with Enzymatic Reaction.
    Al-Shaibani MAS; Sakoleva T; Živković LA; Austin HP; Dörr M; Hilfert L; Haak E; Bornscheuer UT; Vidaković-Koch T
    ChemistryOpen; 2024 Aug; 13(8):e202400064. PubMed ID: 38607952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fine-Tuning the Electrocatalytic Regeneration of NADH Cofactor Using [Rh(Cp*)(bpy)Cl]
    Li W; Zhang C; Zheng Z; Zhang X; Zhang L; Kuhn A
    ACS Appl Mater Interfaces; 2022 Oct; 14(41):46673-46681. PubMed ID: 36215128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Progress and Perspectives on Electrochemical Regeneration of Reduced Nicotinamide Adenine Dinucleotide (NADH).
    Immanuel S; Sivasubramanian R; Gul R; Dar MA
    Chem Asian J; 2020 Dec; 15(24):4256-4270. PubMed ID: 33164351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical regeneration of nicotinamide adenine dinucleotide.
    Aizawa M; Coughlin RW; Charles M
    Biochim Biophys Acta; 1975 Apr; 385(2):362-70. PubMed ID: 164931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced Nitrogen Reduction to Ammonia by Surface- and Defect-Engineered Co-catalyst-Modified Perovskite Catalysts under Ambient Conditions and Their Charge Carrier Dynamics.
    Bastia S; Moses YT; Kumar N; Mishra RP; Chaudhary YS
    ACS Appl Mater Interfaces; 2023 Mar; 15(10):13052-13063. PubMed ID: 36853145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Copper oxide-based cathode for direct NADPH regeneration.
    Kadowaki JT; Jones TH; Sengupta A; Gopalan V; Subramaniam VV
    Sci Rep; 2021 Jan; 11(1):180. PubMed ID: 33420179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integration of polyaniline/poly(acrylic acid) films and redox enzymes on electrode supports: an in situ electrochemical/surface plasmon resonance study of the bioelectrocatalyzed oxidation of glucose or lactate in the integrated bioelectrocatalytic systems.
    Raitman OA; Katz E; Bückmann AF; Willner I
    J Am Chem Soc; 2002 Jun; 124(22):6487-96. PubMed ID: 12033880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Covalent Immobilization of Dehydrogenases on Carbon Felt for Reusable Anodes with Effective Electrochemical Cofactor Regeneration.
    Pietricola G; Chamorro L; Castellino M; Maureira D; Tommasi T; Hernández S; Wilson L; Fino D; Ottone C
    ChemistryOpen; 2022 Nov; 11(11):e202200102. PubMed ID: 35856864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cr
    Yang XT; Wang ZW; Tan X; Yin XY; Sun Y; Zhu YZ; Wang HF
    ACS Appl Mater Interfaces; 2023 Feb; 15(4):5273-5282. PubMed ID: 36648244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supported Pt Enabled Proton-Driven NAD(P)
    Burnett JWH; Chen H; Li J; Li Y; Huang S; Shi J; McCue AJ; Howe RF; Minteer SD; Wang X
    ACS Appl Mater Interfaces; 2022 May; 14(18):20943-20952. PubMed ID: 35482431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molybdenum-titanium oxo-cluster, an efficient electrochemical catalyst for the facile preparation of black titanium dioxide film.
    Yang L; Shu XP; Fu MY; Wang HY; Zhu QY; Dai J
    Dalton Trans; 2020 Aug; 49(30):10516-10522. PubMed ID: 32691817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low potential detection of NADH based on Fe₃O₄ nanoparticles/multiwalled carbon nanotubes composite: fabrication of integrated dehydrogenase-based lactate biosensor.
    Teymourian H; Salimi A; Hallaj R
    Biosens Bioelectron; 2012 Mar; 33(1):60-8. PubMed ID: 22230696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly responsive and sensitive non-enzymatic electrochemical sensor for the detection of β-NADH in food, environmental and biological samples using AuNP on polydopamine/titanium carbide composite.
    Prasanna SB; Bahajjaj AAA; Lee YH; Lin YC; Dhawan U; Sakthivel R; Chung RJ
    Food Chem; 2023 Nov; 426():136609. PubMed ID: 37331138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of Porous Ti/RuO
    Zhu Y; Li B; Wang Y; Wang T
    Molecules; 2023 Feb; 28(5):. PubMed ID: 36903435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrocatalytic detection of NADH and glycerol by NAD(+)-modified carbon electrodes.
    Alvarez-González MI; Saidman SB; Lobo-Castañón MJ; Miranda-Ordieres AJ; Tuñón-Blanco P
    Anal Chem; 2000 Feb; 72(3):520-7. PubMed ID: 10695137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.