These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38426307)

  • 1. High-pressure studies of size dependent yield strength in rhenium diboride nanocrystals.
    Hu S; Hamilton SG; Turner CL; Robertson DD; Yan J; Kavner A; Kaner RB; Tolbert SH
    Nanoscale Horiz; 2024 Mar; 9(4):646-655. PubMed ID: 38426307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and High-Pressure Mechanical Properties of Superhard Rhenium/Tungsten Diboride Nanocrystals.
    Lei J; Hu S; Turner CL; Zeng K; Yeung MT; Yan J; Kaner RB; Tolbert SH
    ACS Nano; 2019 Sep; 13(9):10036-10048. PubMed ID: 31373793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superhard Rhenium/Tungsten Diboride Solid Solutions.
    Lech AT; Turner CL; Lei J; Mohammadi R; Tolbert SH; Kaner RB
    J Am Chem Soc; 2016 Nov; 138(43):14398-14408. PubMed ID: 27718568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of ultra-incompressible superhard rhenium diboride at ambient pressure.
    Chung HY; Weinberger MB; Levine JB; Cumberland RW; Kavner A; Yang JM; Tolbert SH; Kaner RB
    Science; 2007 Apr; 316(5823):436-9. PubMed ID: 17446399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental and Computational Studies on Superhard Material Rhenium Diboride under Ultrahigh Pressures.
    Burrage KC; Lin CM; Chen WC; Chen CC; Vohra YK
    Materials (Basel); 2020 Apr; 13(7):. PubMed ID: 32260069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comment on "Synthesis of ultra-incompressible superhard rhenium diboride at ambient pressure".
    Dubrovinskaia N; Dubrovinsky L; Solozhenko VL
    Science; 2007 Dec; 318(5856):1550; author reply 1550. PubMed ID: 18063772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanocrystalline Cubic Silicon Carbide: A Route to Superhardness.
    Sun R; Wei X; Hu W; Ying P; Wu Y; Wang L; Chen S; Zhang X; Ma M; Yu D; Wang L; Gao G; Xu B; Tian Y
    Small; 2022 Jun; 18(22):e2201212. PubMed ID: 35396819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental and Computational Studies of Compression and Deformation Behavior of Hafnium Diboride to 208 GPa.
    Burrage K; Lin CM; Chen CC; Vohra YK
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454458
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Wang YX; Liu YY; Yan ZX; Liu W; Gu JB
    RSC Adv; 2020 Oct; 10(61):37142-37152. PubMed ID: 35521287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling the dependence of strength on grain sizes in nanocrystalline materials.
    He W; Bhole SD; Chen D
    Sci Technol Adv Mater; 2008 Jan; 9(1):015003. PubMed ID: 27877940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-pressure strengthening in ultrafine-grained metals.
    Zhou X; Feng Z; Zhu L; Xu J; Miyagi L; Dong H; Sheng H; Wang Y; Li Q; Ma Y; Zhang H; Yan J; Tamura N; Kunz M; Lutker K; Huang T; Hughes DA; Huang X; Chen B
    Nature; 2020 Mar; 579(7797):67-72. PubMed ID: 32094661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Below the Hall-Petch Limit in Nanocrystalline Ceramics.
    Ryou H; Drazin JW; Wahl KJ; Qadri SB; Gorzkowski EP; Feigelson BN; Wollmershauser JA
    ACS Nano; 2018 Apr; 12(4):3083-3094. PubMed ID: 29493218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomic Simulations of Grain Structures and Deformation Behaviors in Nanocrystalline CoCrFeNiMn High-Entropy Alloy.
    Hou J; Li Q; Wu C; Zheng L
    Materials (Basel); 2019 Mar; 12(7):. PubMed ID: 30934707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strength weakening by nanocrystals in ceramic materials.
    Wang Y; Zhang J; Zhao Y
    Nano Lett; 2007 Oct; 7(10):3196-9. PubMed ID: 17854230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Texture and Grain Size on the Yield Strength of ZK61 Alloy Rods Processed by Cyclic Extrusion and Compression.
    Zhang L; Zhang W; Cao B; Chen W; Duan J; Cui G
    Materials (Basel); 2017 Oct; 10(11):. PubMed ID: 29072616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A 2.9 GPa Strength Nano-Grained and Nano-Precipitated 304L-Type Austenitic Stainless Steel.
    Du C; Liu G; Sun B; Xin S; Shen T
    Materials (Basel); 2020 Nov; 13(23):. PubMed ID: 33260803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detecting grain rotation at the nanoscale.
    Chen B; Lutker K; Lei J; Yan J; Yang S; Mao HK
    Proc Natl Acad Sci U S A; 2014 Mar; 111(9):3350-3. PubMed ID: 24550455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ideal maximum strengths and defect-induced softening in nanocrystalline-nanotwinned metals.
    Ke X; Ye J; Pan Z; Geng J; Besser MF; Qu D; Caro A; Marian J; Ott RT; Wang YM; Sansoz F
    Nat Mater; 2019 Nov; 18(11):1207-1214. PubMed ID: 31548629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HighP-TNano-Mechanics of Polycrystalline Nickel.
    Zhao Y; Shen T; Zhang J
    Nanoscale Res Lett; 2007 Sep; 2(10):476-91. PubMed ID: 21794186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical properties of ceria nanorods and nanochains; the effect of dislocations, grain-boundaries and oriented attachment.
    Sayle TX; Inkson BJ; Karakoti A; Kumar A; Molinari M; Möbus G; Parker SC; Seal S; Sayle DC
    Nanoscale; 2011 Apr; 3(4):1823-37. PubMed ID: 21409243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.