These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38426561)

  • 1. Biocompatible carbon quantum dots as versatile imaging nanotrackers of fungal pathogen -
    Rais A; Sharma S; Mishra P; Khan LA; Prasad T
    Nanomedicine (Lond); 2024 Apr; 19(8):671-688. PubMed ID: 38426561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic Insights into Cellular and Molecular Targets of Zinc Oxide Quantum Dots (ZnO QDs) in Fungal Pathogen,
    Chand P; Narula K; Vs R; Sharma S; Kumari S; Mondal N; Singh SP; Mishra P; Prasad T
    ACS Infect Dis; 2024 Jun; 10(6):1914-1934. PubMed ID: 38831663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multifunctional, fluorescent DNA-derived carbon dots for biomedical applications: bioimaging, luminescent DNA hydrogels, and dopamine detection.
    Pandey PK; Preeti ; Rawat K; Prasad T; Bohidar HB
    J Mater Chem B; 2020 Feb; 8(6):1277-1289. PubMed ID: 31967170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silver nanoparticles induced alterations in multiple cellular targets, which are critical for drug susceptibilities and pathogenicity in fungal pathogen (
    Radhakrishnan VS; Reddy Mudiam MK; Kumar M; Dwivedi SP; Singh SP; Prasad T
    Int J Nanomedicine; 2018; 13():2647-2663. PubMed ID: 29760548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The fungal pathogen Candida albicans autoinduces hyphal morphogenesis by raising extracellular pH.
    Vylkova S; Carman AJ; Danhof HA; Collette JR; Zhou H; Lorenz MC
    mBio; 2011; 2(3):e00055-11. PubMed ID: 21586647
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Çolak A; Ikeh MAC; Nobile CJ; Baykara MZ
    mSphere; 2020 Nov; 5(6):. PubMed ID: 33148826
    [No Abstract]   [Full Text] [Related]  

  • 7. Synthesis of luminescent chitosan-based carbon dots for Candida albicans bioimaging.
    Oliveira BP; Bessa NUC; do Nascimento JF; de Paula Cavalcante CS; Fontenelle RODS; Abreu FOMDS
    Int J Biol Macromol; 2023 Feb; 227():805-814. PubMed ID: 36549618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ent2 Governs Morphogenesis and Virulence in Part through Regulation of the Cdc42 Signaling Cascade in the Fungal Pathogen Candida albicans.
    Lash E; Prudent V; Stogios PJ; Savchenko A; Noble SM; Robbins N; Cowen LE
    mBio; 2023 Apr; 14(2):e0343422. PubMed ID: 36809010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Natural Variation in Clinical Isolates of Candida albicans Modulates Neutrophil Responses.
    Shankar M; Lo TL; Traven A
    mSphere; 2020 Aug; 5(4):. PubMed ID: 32817378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bandgap Tunable AgInS based Quantum Dots for High Contrast Cell Imaging with Enhanced Photodynamic and Antifungal Applications.
    Mir IA; Radhakrishanan VS; Rawat K; Prasad T; Bohidar HB
    Sci Rep; 2018 Jun; 8(1):9322. PubMed ID: 29921973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CdTe quantum dots conjugated to concanavalin A as potential fluorescent molecular probes for saccharides detection in Candida albicans.
    Tenório DP; Andrade CG; Cabral Filho PE; Sabino CP; Kato IT; Carvalho LB; Alves S; Ribeiro MS; Fontes A; Santos BS
    J Photochem Photobiol B; 2015 Jan; 142():237-43. PubMed ID: 25559489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of Candida albicans biofilm and hyphae formation by biocompatible oligomers.
    Lee JH; Kim YG; Lee J
    Lett Appl Microbiol; 2018 Aug; 67(2):123-129. PubMed ID: 29885256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative Study on the Efficiency of the Photodynamic Inactivation of Candida albicans Using CdTe Quantum Dots, Zn(II) Porphyrin and Their Conjugates as Photosensitizers.
    Viana OS; Ribeiro MS; Rodas AC; Rebouças JS; Fontes A; Santos BS
    Molecules; 2015 May; 20(5):8893-912. PubMed ID: 25993419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent advances in understanding
    Arkowitz RA; Bassilana M
    F1000Res; 2019; 8():. PubMed ID: 31131089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suppression of hyphal formation and virulence of
    Khan F; Bamunuarachchi NI; Tabassum N; Jo DM; Khan MM; Kim YM
    Biofouling; 2021 Jul; 37(6):626-655. PubMed ID: 34284656
    [No Abstract]   [Full Text] [Related]  

  • 16. [Demonstration of β-1,2 mannan structures expressed on the cell wall of Candida albicans yeast form but not on the hyphal form by using monoclonal antibodies].
    Aydın C; Ataoğlu H
    Mikrobiyol Bul; 2015 Jan; 49(1):66-76. PubMed ID: 25706732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of cell cycle-regulated, putative hyphal genes in Candida albicans.
    Gordân R; Pyne S; Bulyk ML
    Pac Symp Biocomput; 2012; ():299-310. PubMed ID: 22174285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptomic and Metabolomic Analysis Revealed Roles of Yck2 in Carbon Metabolism and Morphogenesis of
    Liboro K; Yu SR; Lim J; So YS; Bahn YS; Eoh H; Park H
    Front Cell Infect Microbiol; 2021; 11():636834. PubMed ID: 33796481
    [No Abstract]   [Full Text] [Related]  

  • 19. Gymnemic acids inhibit hyphal growth and virulence in Candida albicans.
    Vediyappan G; Dumontet V; Pelissier F; d'Enfert C
    PLoS One; 2013; 8(9):e74189. PubMed ID: 24040201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Candida and candidaemia. Susceptibility and epidemiology.
    Arendrup MC
    Dan Med J; 2013 Nov; 60(11):B4698. PubMed ID: 24192246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.