These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38426561)

  • 61. Inhibitory Effects of the Fungal Pigment Rubiginosin C on Hyphal and Biofilm Formation in
    Zeng H; Stadler M; Abraham WR; Müsken M; Schrey H
    J Fungi (Basel); 2023 Jul; 9(7):. PubMed ID: 37504715
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The Vacuolar Ca
    Luna-Tapia A; DeJarnette C; Sansevere E; Reitler P; Butts A; Hevener KE; Palmer GE
    mSphere; 2019 Feb; 4(1):. PubMed ID: 30728284
    [TBL] [Abstract][Full Text] [Related]  

  • 63. In-vitro evaluation of virulence markers and antifungal resistance of clinical Candida albicans strains isolated from Karachi, Pakistan.
    Jabeen G; Naz SA; Rangel DEN; Jabeen N; Shafique M; Yasmeen K
    Fungal Biol; 2023; 127(7-8):1241-1249. PubMed ID: 37495314
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The yeast to hyphal transition following hematogenous candidiasis induces shock and organ injury independent of circulating tumor necrosis factor-alpha.
    Matuschak GM; Lechner AJ
    Crit Care Med; 1997 Jan; 25(1):111-20. PubMed ID: 8989186
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A forkhead transcription factor is important for true hyphal as well as yeast morphogenesis in Candida albicans.
    Bensen ES; Filler SG; Berman J
    Eukaryot Cell; 2002 Oct; 1(5):787-98. PubMed ID: 12455696
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Effects of the binding of a Helianthus annuus lectin to Candida albicans cell wall on biofilm development and adhesion to host cells.
    Del Rio M; de la Canal L; Pinedo M; Mora-Montes HM; Regente M
    Phytomedicine; 2019 May; 58():152875. PubMed ID: 30884454
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Magnesium deprivation affects cellular circuitry involved in drug resistance and virulence in Candida albicans.
    Hans S; Fatima Z; Hameed S
    J Glob Antimicrob Resist; 2019 Jun; 17():263-275. PubMed ID: 30659981
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Tetracycline-inducible gene expression and gene deletion in Candida albicans.
    Park YN; Morschhäuser J
    Eukaryot Cell; 2005 Aug; 4(8):1328-42. PubMed ID: 16087738
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The GRF10 homeobox gene regulates filamentous growth in the human fungal pathogen Candida albicans.
    Ghosh AK; Wangsanut T; Fonzi WA; Rolfes RJ
    FEMS Yeast Res; 2015 Dec; 15(8):. PubMed ID: 26472755
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Dracorhodin perchlorate inhibits biofilm formation and virulence factors of Candida albicans.
    Yang LF; Liu X; Lv LL; Ma ZM; Feng XC; Ma TH
    J Mycol Med; 2018 Mar; 28(1):36-44. PubMed ID: 29477784
    [TBL] [Abstract][Full Text] [Related]  

  • 71. ERG11 couples oxidative stress adaptation, hyphal elongation and virulence in Candida albicans.
    Wu Y; Wu M; Wang Y; Chen Y; Gao J; Ying C
    FEMS Yeast Res; 2018 Nov; 18(7):. PubMed ID: 29931064
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Candida albicans Hyphal Morphogenesis within Macrophages Does Not Require Carbon Dioxide or pH-Sensing Pathways.
    Wilson HB; Lorenz MC
    Infect Immun; 2023 May; 91(5):e0008723. PubMed ID: 37078861
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Comparative Evaluations of the Pathogenesis of Candida auris Phenotypes and Candida albicans Using Clinically Relevant Murine Models of Infections.
    Vila T; Montelongo-Jauregui D; Ahmed H; Puthran T; Sultan AS; Jabra-Rizk MA
    mSphere; 2020 Aug; 5(4):. PubMed ID: 32759340
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Potential role of Candida albicans secreted aspartic protease 9 in serum induced-hyphal formation and interaction with oral epithelial cells.
    Yang H; Tsang PCS; Pow EHN; Lam OLT; Tsang PW
    Microb Pathog; 2020 Feb; 139():103896. PubMed ID: 31794816
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Genotypic and phenotypic characterization of Candida albicans Lebanese hospital isolates resistant and sensitive to caspofungin.
    Toutounji M; Tokajian S; Khalaf RA
    Fungal Genet Biol; 2019 Jun; 127():12-22. PubMed ID: 30794951
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Human Milk Oligosaccharides Inhibit Candida albicans Invasion of Human Premature Intestinal Epithelial Cells.
    Gonia S; Tuepker M; Heisel T; Autran C; Bode L; Gale CA
    J Nutr; 2015 Sep; 145(9):1992-8. PubMed ID: 26180242
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Molecular analysis and dimorphism of azole-susceptible and resistant Candida albicans isolates.
    Costa CR; Hasimoto e Souza LK; Ataídes FS; Ferri PH; Costa MP; Fernanades Ode F; Silva Mdo R
    Rev Soc Bras Med Trop; 2011; 44(6):740-4. PubMed ID: 22094708
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Bursting the Virulence Traits of MDR Strain of
    Abid S; Uzair B; Niazi MBK; Fasim F; Bano SA; Jamil N; Batool R; Sajjad S
    Int J Nanomedicine; 2021; 16():1157-1174. PubMed ID: 33623380
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Bioinspired Carbon Quantum Dots: An Antibiofilm Agents.
    Shaikh AF; Tamboli MS; Patil RH; Bhan A; Ambekar JD; Kale BB
    J Nanosci Nanotechnol; 2019 Apr; 19(4):2339-2345. PubMed ID: 30486995
    [TBL] [Abstract][Full Text] [Related]  

  • 80.
    Ke CL; Liao YT; Lin CH
    Virulence; 2021 Dec; 12(1):281-297. PubMed ID: 33427576
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.