These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38426571)

  • 21. Developing in a warming intertidal, negative carry over effects of heatwave conditions in development to the pentameral starfish in Parvulastra exigua.
    Balogh R; Byrne M
    Mar Environ Res; 2020 Dec; 162():105083. PubMed ID: 32810717
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp.
    Vergés A; Doropoulos C; Malcolm HA; Skye M; Garcia-Pizá M; Marzinelli EM; Campbell AH; Ballesteros E; Hoey AS; Vila-Concejo A; Bozec YM; Steinberg PD
    Proc Natl Acad Sci U S A; 2016 Nov; 113(48):13791-13796. PubMed ID: 27849585
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Persistence of seaweed forests in the anthropocene will depend on warming and marine heatwave profiles.
    Straub SC; Wernberg T; Marzinelli EM; Vergés A; Kelaher BP; Coleman MA
    J Phycol; 2022 Feb; 58(1):22-35. PubMed ID: 34800039
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differential impacts of ocean acidification and warming on winter and summer progeny of a coastal squid (Loligo vulgaris).
    Rosa R; Trübenbach K; Pimentel MS; Boavida-Portugal J; Faleiro F; Baptista M; Dionísio G; Calado R; Pörtner HO; Repolho T
    J Exp Biol; 2014 Feb; 217(Pt 4):518-25. PubMed ID: 24523499
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Direct and indirect impacts of ocean acidification and warming on algae-herbivore interactions in intertidal habitats.
    Benítez S; Navarro JM; Mardones D; Villanueva PA; Ramirez-Kushel F; Torres R; Lagos NA
    Mar Pollut Bull; 2023 Oct; 195():115549. PubMed ID: 37729690
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kelp carbon sink potential decreases with warming due to accelerating decomposition.
    Filbee-Dexter K; Feehan CJ; Smale DA; Krumhansl KA; Augustine S; de Bettignies F; Burrows MT; Byrnes JEK; Campbell J; Davoult D; Dunton KH; Franco JN; Garrido I; Grace SP; Hancke K; Johnson LE; Konar B; Moore PJ; Norderhaug KM; O'Dell A; Pedersen MF; Salomon AK; Sousa-Pinto I; Tiegs S; Yiu D; Wernberg T
    PLoS Biol; 2022 Aug; 20(8):e3001702. PubMed ID: 35925899
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Elevated Temperature Affects Phenotypic Plasticity in the Bull Kelp (Nereocystis luetkeana, Phaeophyceae).
    Supratya VP; Coleman LJM; Martone PT
    J Phycol; 2020 Dec; 56(6):1534-1541. PubMed ID: 32666523
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adjustments in fatty acid composition is a mechanism that can explain resilience to marine heatwaves and future ocean conditions in the habitat-forming seaweed Phyllospora comosa (Labillardière) C.Agardh.
    Britton D; Schmid M; Noisette F; Havenhand JN; Paine ER; McGraw CM; Revill AT; Virtue P; Nichols PD; Mundy CN; Hurd CL
    Glob Chang Biol; 2020 Jun; 26(6):3512-3524. PubMed ID: 32105368
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adapt, move or die - how will tropical coral reef fishes cope with ocean warming?
    Habary A; Johansen JL; Nay TJ; Steffensen JF; Rummer JL
    Glob Chang Biol; 2017 Feb; 23(2):566-577. PubMed ID: 27593976
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Not just range limits: Warming rate and thermal sensitivity shape climate change vulnerability in a species range center.
    Beaty F; Gehman AM; Brownlee G; Harley CDG
    Ecology; 2023 Dec; 104(12):e4183. PubMed ID: 37786322
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Overfishing reduces resilience of kelp beds to climate-driven catastrophic phase shift.
    Ling SD; Johnson CR; Frusher SD; Ridgway KR
    Proc Natl Acad Sci U S A; 2009 Dec; 106(52):22341-5. PubMed ID: 20018706
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nitrogen sufficiency enhances thermal tolerance in habitat-forming kelp: implications for acclimation under thermal stress.
    Fernández PA; Gaitán-Espitia JD; Leal PP; Schmid M; Revill AT; Hurd CL
    Sci Rep; 2020 Feb; 10(1):3186. PubMed ID: 32081970
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of ocean warming and acidification on survival, growth and skeletal development in the early benthic juvenile sea urchin (Heliocidaris erythrogramma).
    Wolfe K; Dworjanyn SA; Byrne M
    Glob Chang Biol; 2013 Sep; 19(9):2698-707. PubMed ID: 23649847
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Loss, resilience and recovery of kelp forests in a region of rapid ocean warming.
    Krumhansl KA; Brooks CM; Lowen JB; O'Brien JM; Wong MC; DiBacco C
    Ann Bot; 2024 Mar; 133(1):73-92. PubMed ID: 37952103
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Integrating laboratory experiments and biogeographic modelling approaches to understand sensitivity to ocean warming in rare and common marine annelids.
    Massamba-N'Siala G; Reygondeau G; Simonini R; Cheung WWL; Prevedelli D; Calosi P
    Oecologia; 2022 Jun; 199(2):453-470. PubMed ID: 35689680
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Primary production of the kelp Lessonia corrugata varies with season and water motion: Implications for coastal carbon cycling.
    Nardelli AE; Visch W; Farrington G; Sanderson JC; Bellgrove A; Wright JT; Macleod C; Hurd CL
    J Phycol; 2024 Feb; 60(1):102-115. PubMed ID: 37966712
    [TBL] [Abstract][Full Text] [Related]  

  • 37. From global to regional and back again: common climate stressors of marine ecosystems relevant for adaptation across five ocean warming hotspots.
    Popova E; Yool A; Byfield V; Cochrane K; Coward AC; Salim SS; Gasalla MA; Henson SA; Hobday AJ; Pecl GT; Sauer WH; Roberts MJ
    Glob Chang Biol; 2016 Jun; 22(6):2038-53. PubMed ID: 26855008
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Intra-Annual Variability in Responses of a Canopy Forming Kelp to Cumulative Low Tide Heat Stress: Implications for Populations at the Trailing Range Edge.
    Hereward HFR; King NG; Smale DA
    J Phycol; 2020 Feb; 56(1):146-158. PubMed ID: 31571218
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of ocean acidification increase embryonic sensitivity to thermal extremes in Atlantic cod, Gadus morhua.
    Dahlke FT; Leo E; Mark FC; Pörtner HO; Bickmeyer U; Frickenhaus S; Storch D
    Glob Chang Biol; 2017 Apr; 23(4):1499-1510. PubMed ID: 27718513
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Invasion-mediated effects on marine trophic interactions in a changing climate: positive feedbacks favour kelp persistence.
    Miranda RJ; Coleman MA; Tagliafico A; Rangel MS; Mamo LT; Barros F; Kelaher BP
    Proc Biol Sci; 2019 Mar; 286(1899):20182866. PubMed ID: 30900532
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.