BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38426698)

  • 21. Biodegradable Metal-Organic Frameworks Power DNAzyme for in Vivo Temporal-Spatial Control Fluorescence Imaging of Aberrant MicroRNA and Hypoxic Tumor.
    Meng X; Zhang K; Yang F; Dai W; Lu H; Dong H; Zhang X
    Anal Chem; 2020 Jun; 92(12):8333-8339. PubMed ID: 32408740
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cascade Amplification-Mediated In Situ Hot-Spot Assembly for MicroRNA Detection and Molecular Logic Gate Operations.
    Yu S; Wang Y; Jiang LP; Bi S; Zhu JJ
    Anal Chem; 2018 Apr; 90(7):4544-4551. PubMed ID: 29570270
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A DNAzyme cascade for amplified detection of intracellular miRNA.
    Wu Y; Li J; Quan K; Meng X; Yang X; Huang J; Wang K
    Chem Commun (Camb); 2020 Sep; 56(70):10163-10166. PubMed ID: 32744553
    [TBL] [Abstract][Full Text] [Related]  

  • 24. DNAzyme cascade circuits in highly integrated DNA nanomachines for sensitive microRNAs imaging in living cells.
    Duan LY; Liu JW; Yu RQ; Jiang JH
    Biosens Bioelectron; 2021 Apr; 177():112976. PubMed ID: 33434778
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ratiometric and amplified fluorescence nanosensor based on a DNA tetrahedron for miRNA imaging in living cells.
    Mo L; Liang D; He W; Yang C; Lin W
    J Mater Chem B; 2021 Oct; 9(39):8341-8347. PubMed ID: 34528052
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Deoxyribozyme-Initiated Self-Catalytic DNA Machine for Amplified Live-Cell Imaging of MicroRNA.
    Wan Y; Li G; Zou L; Wang H; Wang Q; Tan K; Liu X; Wang F
    Anal Chem; 2021 Aug; 93(31):11052-11059. PubMed ID: 34324305
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A DNAzyme-enhanced nonlinear hybridization chain reaction for sensitive detection of microRNA.
    Cao X; Dong J; Sun R; Zhang X; Chen C; Zhu Q
    J Biol Chem; 2023 Jun; 299(6):104751. PubMed ID: 37100287
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On-Site Non-enzymatic Orthogonal Activation of a Catalytic DNA Circuit for Self-Reinforced In Vivo MicroRNA Imaging.
    He S; Yu S; Li R; Chen Y; Wang Q; He Y; Liu X; Wang F
    Angew Chem Int Ed Engl; 2022 Nov; 61(45):e202206529. PubMed ID: 35775154
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Protein-free, ultrasensitive miRNA analysis based on an entropy-driven catalytic reaction switched on a smart-responsive DNAzyme dual-walker amplification strategy.
    Fan Z; Zhao X; Dong Y; Zhou J; Li Y; Wang J; Qi Y; Tan C; Yu H; Li J
    Int J Biol Macromol; 2022 Dec; 223(Pt A):931-938. PubMed ID: 36372107
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An artificial enzyme cascade amplification strategy for highly sensitive and specific detection of breast cancer-derived exosomes.
    Xu H; Zheng L; Zhou Y; Ye BC
    Analyst; 2021 Sep; 146(18):5542-5549. PubMed ID: 34515703
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enzyme-Free Autocatalysis-Driven Feedback DNA Circuits for Amplified Aptasensing of Living Cells.
    Gao Y; Chen Y; Shang J; Yu S; He S; Cui R; Wang F
    ACS Appl Mater Interfaces; 2022 Feb; 14(4):5080-5089. PubMed ID: 35044153
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DNAzyme-based probe for circulating microRNA detection in peripheral blood.
    Shao G; Ji S; Wu A; Liu C; Wang M; Zhang P; Jiao Q; Kang Y
    Drug Des Devel Ther; 2015; 9():6109-17. PubMed ID: 26604698
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In situ multiplex detection of serum exosomal microRNAs using an all-in-one biosensor for breast cancer diagnosis.
    Wang H; He D; Wan K; Sheng X; Cheng H; Huang J; Zhou X; He X; Wang K
    Analyst; 2020 May; 145(9):3289-3296. PubMed ID: 32255115
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dual-microRNA-controlled double-amplified cascaded logic DNA circuits for accurate discrimination of cell subtypes.
    Quan K; Li J; Wang J; Xie N; Wei Q; Tang J; Yang X; Wang K; Huang J
    Chem Sci; 2019 Feb; 10(5):1442-1449. PubMed ID: 30809361
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A DNAzyme-powered cross-catalytic circuit for amplified intracellular imaging.
    Zou L; Wu Q; Zhou Y; Gong X; Liu X; Wang F
    Chem Commun (Camb); 2019 Jun; 55(46):6519-6522. PubMed ID: 31099807
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dual-microRNA-Controlled Electrochemiluminescence Biosensor for Breast Cancer Diagnosis and Supplemental Identification of Breast Cancer Metastasis.
    Ye Z; Ma M; Chen Y; Liu R; Zhang Y; Ma P; Song D
    Anal Chem; 2024 Feb; 96(8):3636-3644. PubMed ID: 38357821
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A MnO
    Xu J; Qin Y; Liang Q; Zhong X; Hou L; Huang Y; Zhao S; Liang H
    Chem Commun (Camb); 2022 Nov; 58(92):12883-12886. PubMed ID: 36321547
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Engineering DNAzyme cascade for signal transduction and amplification.
    Li J; Quan K; Yang Y; Yang X; Meng X; Huang J; Wang K
    Analyst; 2020 Mar; 145(5):1925-1932. PubMed ID: 31989119
    [TBL] [Abstract][Full Text] [Related]  

  • 39. AND-Gated Nanosensor for Imaging of Glutathione and Apyrimidinic Endonuclease 1 in Cells, Animals, and Organoids.
    Huang Z; Xu K; Zhao L; Zheng LE; Xu N; Yan C; Hu X; Zhang Q; Liu J; Zhao Q; Xia Y
    ACS Appl Mater Interfaces; 2023 Jun; 15(22):26316-26327. PubMed ID: 37245159
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Smart enzyme-free amplification dual-mode self-powered platform designed on two-dimensional networked graphdiyne and DNA nanorods for ultra-sensitive detection of breast cancer biomarkers.
    Ma Y; Shi J; Lin Y; Wu Y; Luo H; Yan J; Huang KJ; Tan X
    Anal Chim Acta; 2023 Nov; 1280():341876. PubMed ID: 37858559
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.