These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 38426713)
1. Atomic-Limit Mott Insulator in [4]Triangulene Frameworks. Fang T; Zhang T; Hu T; Wang Z Nano Lett; 2024 Mar; 24(10):3059-3066. PubMed ID: 38426713 [TBL] [Abstract][Full Text] [Related]
2. Magnetic Real Chern Insulator in 2D Metal-Organic Frameworks. Zhang X; He T; Liu Y; Dai X; Liu G; Chen C; Wu W; Zhu J; Yang SA Nano Lett; 2023 Aug; 23(16):7358-7363. PubMed ID: 37535707 [TBL] [Abstract][Full Text] [Related]
3. Higher-order topological Mott insulator on the pyrochlore lattice. Otsuka Y; Yoshida T; Kudo K; Yunoki S; Hatsugai Y Sci Rep; 2021 Oct; 11(1):20270. PubMed ID: 34642375 [TBL] [Abstract][Full Text] [Related]
4. Pseudospin Polarized Dual-Higher-Order Topology in Hydrogen-Substituted Graphdiyne. Zhang T; Hu T; Zhang Y; Wang Z Nano Lett; 2023 Sep; 23(17):8319-8325. PubMed ID: 37643363 [TBL] [Abstract][Full Text] [Related]
5. Intrinsic Second-Order Topological Insulator in Two-Dimensional Covalent Organic Frameworks. Hu T; Zhang T; Mu H; Wang Z J Phys Chem Lett; 2022 Dec; 13(47):10905-10911. PubMed ID: 36394555 [TBL] [Abstract][Full Text] [Related]
6. Spin-Polarized Nematic Order, Quantum Valley Hall States, and Field-Tunable Topological Transitions in Twisted Multilayer Graphene Systems. Zhang S; Dai X; Liu J Phys Rev Lett; 2022 Jan; 128(2):026403. PubMed ID: 35089764 [TBL] [Abstract][Full Text] [Related]
7. Prediction of metal-free Stoner and Mott-Hubbard magnetism in triangulene-based two-dimensional polymers. Yu H; Heine T Sci Adv; 2024 Oct; 10(40):eadq7954. PubMed ID: 39356753 [TBL] [Abstract][Full Text] [Related]
8. Pressure-induced transition from a Mott insulator to a ferromagnetic Weyl metal in La Yang Y; Yu F; Wen X; Gui Z; Zhang Y; Zhan F; Wang R; Ying J; Chen X Nat Commun; 2023 Apr; 14(1):2260. PubMed ID: 37081003 [TBL] [Abstract][Full Text] [Related]
13. Wannier permanent wave functions for featureless bosonic mott insulators on the 1/3-filled kagome lattice. Parameswaran SA; Kimchi I; Turner AM; Stamper-Kurn DM; Vishwanath A Phys Rev Lett; 2013 Mar; 110(12):125301. PubMed ID: 25166814 [TBL] [Abstract][Full Text] [Related]
14. Acoustic higher-order topological insulator on a kagome lattice. Xue H; Yang Y; Gao F; Chong Y; Zhang B Nat Mater; 2019 Feb; 18(2):108-112. PubMed ID: 30598539 [TBL] [Abstract][Full Text] [Related]
15. Realization of topological Mott insulator in a twisted bilayer graphene lattice model. Chen BB; Liao YD; Chen Z; Vafek O; Kang J; Li W; Meng ZY Nat Commun; 2021 Sep; 12(1):5480. PubMed ID: 34531383 [TBL] [Abstract][Full Text] [Related]
16. A quantized microwave quadrupole insulator with topologically protected corner states. Peterson CW; Benalcazar WA; Hughes TL; Bahl G Nature; 2018 Mar; 555(7696):346-350. PubMed ID: 29542690 [TBL] [Abstract][Full Text] [Related]
17. A Mott insulator of fermionic atoms in an optical lattice. Jördens R; Strohmaier N; Günter K; Moritz H; Esslinger T Nature; 2008 Sep; 455(7210):204-7. PubMed ID: 18784720 [TBL] [Abstract][Full Text] [Related]
18. Higher-Order Topological Insulator in Twisted Bilayer Graphene. Park MJ; Kim Y; Cho GY; Lee S Phys Rev Lett; 2019 Nov; 123(21):216803. PubMed ID: 31809156 [TBL] [Abstract][Full Text] [Related]
19. Acoustic higher-order topology derived from first-order with built-in Zeeman-like fields. Huang X; Lu J; Yan Z; Yan M; Deng W; Chen G; Liu Z Sci Bull (Beijing); 2022 Mar; 67(5):488-494. PubMed ID: 36546169 [TBL] [Abstract][Full Text] [Related]
20. Realization of high-order topological phase transition in 2D metal-organic frameworks. Li Y; He T; Zhao M; Liu Y; Dai X; Liu G; Zhang X J Phys Condens Matter; 2023 Oct; 36(1):. PubMed ID: 37748480 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]