BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 38426942)

  • 1. Switchable Coacervate Formation via Amino Acid Functionalization of Poly(dehydroalanine).
    Morrison CA; Chan EP; Lee T; Deming TJ
    Biomacromolecules; 2024 Apr; 25(4):2554-2562. PubMed ID: 38426942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Poly(dehydroalanine): Synthesis, Properties, and Functional Diversification of a Fluorescent Polypeptide.
    Benavides I; Raftery ED; Bell AG; Evans D; Scott WA; Houk KN; Deming TJ
    J Am Chem Soc; 2022 Mar; 144(9):4214-4223. PubMed ID: 35224969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile conversion of cysteine and alkyl cysteines to dehydroalanine on protein surfaces: versatile and switchable access to functionalized proteins.
    Bernardes GJ; Chalker JM; Errey JC; Davis BG
    J Am Chem Soc; 2008 Apr; 130(15):5052-3. PubMed ID: 18357986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Active Controlled and Tunable Coacervation Using Side-Chain Functional α-Helical Homopolypeptides.
    Scott WA; Gharakhanian EG; Bell AG; Evans D; Barun E; Houk KN; Deming TJ
    J Am Chem Soc; 2021 Nov; 143(43):18196-18203. PubMed ID: 34669392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The dehydroalanine effect in the fragmentation of ions derived from polypeptides.
    Pilo AL; Peng Z; McLuckey SA
    J Mass Spectrom; 2016 Oct; 51(10):857-866. PubMed ID: 27484024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification.
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31038480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biocompatible Photoinduced Alkylation of Dehydroalanine for the Synthesis of Unnatural α-Amino Acids.
    Delgado JAC; Correia JTM; Pissinati EF; Paixão MW
    Org Lett; 2021 Jul; 23(13):5251-5255. PubMed ID: 34152782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carrier design: conformational studies of amino acid (X) and oligopeptide (X-DL-Alam) substituted poly (L-lysine).
    Mezö G; Kajtár J; Hudecz F; Szekerke M
    Biopolymers; 1993 Jun; 33(6):873-85. PubMed ID: 8318662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The specificity of clostripain from Clostridium histolyticum. Mapping the S' subsites via acyl transfer to amino acid amides and peptides.
    Ullmann D; Jakubke HD
    Eur J Biochem; 1994 Aug; 223(3):865-72. PubMed ID: 8055964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversible hydrogen transfer reactions of cysteine thiyl radicals in peptides: the conversion of cysteine into dehydroalanine and alanine, and of alanine into dehydroalanine.
    Mozziconacci O; Kerwin BA; Schöneich C
    J Phys Chem B; 2011 Oct; 115(42):12287-305. PubMed ID: 21895001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile chemoselective synthesis of dehydroalanine-containing peptides.
    Okeley NM; Zhu Y; van Der Donk WA
    Org Lett; 2000 Nov; 2(23):3603-6. PubMed ID: 11073655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and stability of pegylated poly(S-alkyl-L-homocysteine) coacervate core micelles in aqueous media.
    Benavides I; Scott WA; Cai X; Zhou ZH; Deming TJ
    Eur Phys J E Soft Matter; 2023 Sep; 46(9):81. PubMed ID: 37707598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multimodal switching of conformation and solubility in homocysteine derived polypeptides.
    Kramer JR; Deming TJ
    J Am Chem Soc; 2014 Apr; 136(15):5547-50. PubMed ID: 24694061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interfacial energy of polypeptide complex coacervates measured via capillary adhesion.
    Priftis D; Farina R; Tirrell M
    Langmuir; 2012 Jun; 28(23):8721-9. PubMed ID: 22578030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coacervation between Two Positively Charged Poly(ionic liquid)s.
    Zhang C; Cai Y; Zhao Q
    Macromol Rapid Commun; 2022 Sep; 43(18):e2200191. PubMed ID: 35632991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stability Enhancement of a π-Stacked Helical Structure Using Substituents of an Amino Acid Side Chain: Helix Formation via a Nucleation-Elongation Mechanism.
    Kanbayashi N; Kataoka Y; Okamura TA; Onitsuka K
    J Am Chem Soc; 2022 Apr; 144(13):6080-6090. PubMed ID: 35325538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of side chain length on intrahelical interactions between carboxylate- and guanidinium-containing amino acids.
    Kuo HT; Yang PA; Wang WR; Hsu HC; Wu CH; Ting YT; Weng MH; Kuo LH; Cheng RP
    Amino Acids; 2014 Aug; 46(8):1867-83. PubMed ID: 24744084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrospinnable, Neutral Coacervates for Facile Preparation of Solid Phenolic Bioadhesives.
    Kim JS; Hwang H; Lee D; Lee H
    ACS Appl Mater Interfaces; 2021 Aug; 13(32):37989-37996. PubMed ID: 34346669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complex coacervation of poly(ethylene-imine)/polypeptide aqueous solutions: thermodynamic and rheological characterization.
    Priftis D; Megley K; Laugel N; Tirrell M
    J Colloid Interface Sci; 2013 May; 398():39-50. PubMed ID: 23518303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic Arylhydroxylation of Dehydroalanine in Continuous Flow for Simple Access to Unnatural Amino Acids.
    Khan RKM; Zhao Y; Scully TD; Buchwald SL
    Chemistry; 2018 Oct; 24(57):15215-15218. PubMed ID: 30102444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.