BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 38427231)

  • 1. Targeted Modification of Epigenetic Marks Using CRISPR/dCas9-SunTag-Based Modular Epigenetic Toolkit.
    Song MK; Kim YS
    Methods Mol Biol; 2024; 2761():81-91. PubMed ID: 38427231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A review on CRISPR/Cas-based epigenetic regulation in plants.
    Jogam P; Sandhya D; Alok A; Peddaboina V; Allini VR; Zhang B
    Int J Biol Macromol; 2022 Oct; 219():1261-1271. PubMed ID: 36057300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Precise epigenomic editing with a SunTag-based modular epigenetic toolkit.
    Guhathakurta S; Adams L; Jeong I; Sivakumar A; Cha M; Bernardo Fiadeiro M; Hu HN; Kim YS
    Epigenetics; 2022 Dec; 17(13):2075-2081. PubMed ID: 35920441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Establishment of Cell Lines Stably Expressing dCas9-Fusions to Address Kinetics of Epigenetic Editing.
    Goubert D; Koncz M; Kiss A; Rots MG
    Methods Mol Biol; 2018; 1767():395-415. PubMed ID: 29524148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements.
    Thakore PI; D'Ippolito AM; Song L; Safi A; Shivakumar NK; Kabadi AM; Reddy TE; Crawford GE; Gersbach CA
    Nat Methods; 2015 Dec; 12(12):1143-9. PubMed ID: 26501517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzyme-free targeted DNA demethylation using CRISPR-dCas9-based steric hindrance to identify DNA methylation marks causal to altered gene expression.
    Sapozhnikov DM; Szyf M
    Nat Protoc; 2022 Dec; 17(12):2840-2881. PubMed ID: 36207463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epigenome editing based on CRISPR/dCas9
    Huang H; Zhang W; Zhang J; Zhao A; Jiang H
    Exp Cell Res; 2023 Apr; 425(2):113551. PubMed ID: 36914062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stabilization of Foxp3 expression by CRISPR-dCas9-based epigenome editing in mouse primary T cells.
    Okada M; Kanamori M; Someya K; Nakatsukasa H; Yoshimura A
    Epigenetics Chromatin; 2017; 10():24. PubMed ID: 28503202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR-based epigenome editing: mechanisms and applications.
    Fadul SM; Arshad A; Mehmood R
    Epigenomics; 2023 Nov; 15(21):1137-1155. PubMed ID: 37990877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of Gene Expression Using dCas9-SunTag Platforms.
    Morita S; Horii T; Hatada I
    Methods Mol Biol; 2023; 2577():189-195. PubMed ID: 36173574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antagonistic and synergistic epigenetic modulation using orthologous CRISPR/dCas9-based modular system.
    Josipović G; Tadić V; Klasić M; Zanki V; Bečeheli I; Chung F; Ghantous A; Keser T; Madunić J; Bošković M; Lauc G; Herceg Z; Vojta A; Zoldoš V
    Nucleic Acids Res; 2019 Oct; 47(18):9637-9657. PubMed ID: 31410472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR/dCas9-mediated epigenetic modification reveals differential regulation of histone acetylation on Aspergillus niger secondary metabolite.
    Li X; Huang L; Pan L; Wang B; Pan L
    Microbiol Res; 2021 Apr; 245():126694. PubMed ID: 33482403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting cancer epigenetics with CRISPR-dCAS9: Principles and prospects.
    Rahman MM; Tollefsbol TO
    Methods; 2021 Mar; 187():77-91. PubMed ID: 32315755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome and epigenome engineering CRISPR toolkit for
    Williams RM; Senanayake U; Artibani M; Taylor G; Wells D; Ahmed AA; Sauka-Spengler T
    Development; 2018 Feb; 145(4):. PubMed ID: 29386245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporal and Spatial Epigenome Editing Allows Precise Gene Regulation in Mammalian Cells.
    Kuscu C; Mammadov R; Czikora A; Unlu H; Tufan T; Fischer NL; Arslan S; Bekiranov S; Kanemaki M; Adli M
    J Mol Biol; 2019 Jan; 431(1):111-121. PubMed ID: 30098338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-specific recruitment of epigenetic factors with a modular CRISPR/Cas system.
    Anton T; Bultmann S
    Nucleus; 2017 May; 8(3):279-286. PubMed ID: 28448738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Progress and Future Prospect of CRISPR/Cas-Derived Transcription Activation (CRISPRa) System in Plants.
    Ding X; Yu L; Chen L; Li Y; Zhang J; Sheng H; Ren Z; Li Y; Yu X; Jin S; Cao J
    Cells; 2022 Sep; 11(19):. PubMed ID: 36231007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR/dCas-mediated transcriptional and epigenetic regulation in plants.
    Pan C; Sretenovic S; Qi Y
    Curr Opin Plant Biol; 2021 Apr; 60():101980. PubMed ID: 33401227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptional Knockdown in Pneumococci Using CRISPR Interference.
    Kjos M
    Methods Mol Biol; 2019; 1968():89-98. PubMed ID: 30929208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Cre-Dependent CRISPR/dCas9 System for Gene Expression Regulation in Neurons.
    Carullo NVN; Hinds JE; Revanna JS; Tuscher JJ; Bauman AJ; Day JJ
    eNeuro; 2021; 8(4):. PubMed ID: 34321217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.