These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38427553)

  • 1. Diagnosis-Guided Deep Subspace Clustering Association Study for Pathogenetic Markers Identification of Alzheimer's Disease Based on Comparative Atlases.
    Jiao CN; Shang J; Li F; Cui X; Wang YL; Gao YL; Liu JX
    IEEE J Biomed Health Inform; 2024 May; 28(5):3029-3041. PubMed ID: 38427553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identify connectome between genotypes and brain network phenotypes via deep self-reconstruction sparse canonical correlation analysis.
    Wang M; Shao W; Hao X; Huang S; Zhang D
    Bioinformatics; 2022 Apr; 38(8):2323-2332. PubMed ID: 35143604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Novel Longitudinal Phenotype-Genotype Association Study Based on Deep Feature Extraction and Hypergraph Models for Alzheimer's Disease.
    Kong W; Xu Y; Wang S; Wei K; Wen G; Yu Y; Zhu Y
    Biomolecules; 2023 Apr; 13(5):. PubMed ID: 37238598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural substrates of cognitive reserve in Alzheimer's disease spectrum and normal aging.
    Lee DH; Lee P; Seo SW; Roh JH; Oh M; Oh JS; Oh SJ; Kim JS; Jeong Y
    Neuroimage; 2019 Feb; 186():690-702. PubMed ID: 30503934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel joint HCPMMP method for automatically classifying Alzheimer's and different stage MCI patients.
    Sheng J; Wang B; Zhang Q; Liu Q; Ma Y; Liu W; Shao M; Chen B
    Behav Brain Res; 2019 Jun; 365():210-221. PubMed ID: 30836158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selecting the most relevant brain regions to discriminate Alzheimer's disease patients from healthy controls using multiple kernel learning: A comparison across functional and structural imaging modalities and atlases.
    Rondina JM; Ferreira LK; de Souza Duran FL; Kubo R; Ono CR; Leite CC; Smid J; Nitrini R; Buchpiguel CA; Busatto GF
    Neuroimage Clin; 2018; 17():628-641. PubMed ID: 29234599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multimodal active subspace analysis for computing assessment oriented subspaces from neuroimaging data.
    Batta I; Abrol A; Calhoun VD;
    J Neurosci Methods; 2024 Jun; 406():110109. PubMed ID: 38494061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring Imaging Genetic Markers of Alzheimer's Disease Based on a Novel Nonlinear Correlation Analysis Algorithm.
    Yang R; Kong W; Liu K; Wen G; Yu Y
    J Mol Neurosci; 2024 Apr; 74(2):35. PubMed ID: 38568443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel method for PET connectomics guided by fibre-tracking MRI: Application to Alzheimer's disease.
    Sun Z; Naismith SL; Meikle S; Calamante F;
    Hum Brain Mapp; 2024 Mar; 45(4):e26659. PubMed ID: 38491564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimizing Connectivity-Driven Brain Parcellation Using Ensemble Clustering.
    Kurmukov A; Mussabaeva A; Denisova Y; Moyer D; Jahanshad N; Thompson PM; Gutman BA
    Brain Connect; 2020 May; 10(4):183-194. PubMed ID: 32264696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomarker Extraction Based on Subspace Learning for the Prediction of Mild Cognitive Impairment Conversion.
    Li Y; Fang Y; Wang J; Zhang H; Hu B
    Biomed Res Int; 2021; 2021():5531940. PubMed ID: 34513992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disrupted brain network topology in pediatric posttraumatic stress disorder: A resting-state fMRI study.
    Suo X; Lei D; Li K; Chen F; Li F; Li L; Huang X; Lui S; Li L; Kemp GJ; Gong Q
    Hum Brain Mapp; 2015 Sep; 36(9):3677-86. PubMed ID: 26096541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying Multimodal Intermediate Phenotypes Between Genetic Risk Factors and Disease Status in Alzheimer's Disease.
    Hao X; Yao X; Yan J; Risacher SL; Saykin AJ; Zhang D; Shen L;
    Neuroinformatics; 2016 Oct; 14(4):439-52. PubMed ID: 27277494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diagnosis and prognosis of Alzheimer's disease using brain morphometry and white matter connectomes.
    Wang Y; Xu C; Park JH; Lee S; Stern Y; Yoo S; Kim JH; Kim HS; Cha J;
    Neuroimage Clin; 2019; 23():101859. PubMed ID: 31150957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploration of Imaging Genetic Biomarkers of Alzheimer's Disease Based on a Machine Learning Method.
    Wang Y; Wang X
    J Integr Neurosci; 2024 Apr; 23(4):81. PubMed ID: 38682217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sparse Deep Neural Network for Encoding and Decoding the Structural Connectome.
    Singh SP; Gupta S; Rajapakse JC
    IEEE J Transl Eng Health Med; 2024; 12():371-381. PubMed ID: 38633564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Joint functional brain network atlas estimation and feature selection for neurological disorder diagnosis with application to autism.
    Mhiri I; Rekik I
    Med Image Anal; 2020 Feb; 60():101596. PubMed ID: 31739282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Brain's Structural Connectome Mediates the Relationship between Regional Neuroimaging Biomarkers in Alzheimer's Disease.
    Pandya S; Kuceyeski A; Raj A;
    J Alzheimers Dis; 2017; 55(4):1639-1657. PubMed ID: 27911289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HYDRA: Revealing heterogeneity of imaging and genetic patterns through a multiple max-margin discriminative analysis framework.
    Varol E; Sotiras A; Davatzikos C;
    Neuroimage; 2017 Jan; 145(Pt B):346-364. PubMed ID: 26923371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of imaging modalities, brain atlases and feature selection on prediction of Alzheimer's disease.
    Ota K; Oishi N; Ito K; Fukuyama H; ;
    J Neurosci Methods; 2015 Dec; 256():168-83. PubMed ID: 26318777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.