BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 38427563)

  • 1. SWI/SNF-dependent genes are defined by their chromatin landscape.
    Basurto-Cayuela L; Guerrero-Martínez JA; Gómez-Marín E; Sánchez-Escabias E; Escaño-Maestre M; Ceballos-Chávez M; Reyes JC
    Cell Rep; 2024 Mar; 43(3):113855. PubMed ID: 38427563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mediator, TATA-binding protein, and RNA polymerase II contribute to low histone occupancy at active gene promoters in yeast.
    Ansari SA; Paul E; Sommer S; Lieleg C; He Q; Daly AZ; Rode KA; Barber WT; Ellis LC; LaPorta E; Orzechowski AM; Taylor E; Reeb T; Wong J; Korber P; Morse RH
    J Biol Chem; 2014 May; 289(21):14981-95. PubMed ID: 24727477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The SWI/SNF Complex: A Frequently Mutated Chromatin Remodeling Complex in Cancer.
    Nguyen VT; Tessema M; Weissman BE
    Cancer Treat Res; 2023; 190():211-244. PubMed ID: 38113003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel Interactions between the Human T-Cell Leukemia Virus Type 1 Antisense Protein HBZ and the SWI/SNF Chromatin Remodeling Family: Implications for Viral Life Cycle.
    Alasiri A; Abboud Guerr J; Hall WW; Sheehy N
    J Virol; 2019 Aug; 93(16):. PubMed ID: 31142665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BRAHMA ATPase of the SWI/SNF chromatin remodeling complex acts as a positive regulator of gibberellin-mediated responses in arabidopsis.
    Archacki R; Buszewicz D; Sarnowski TJ; Sarnowska E; Rolicka AT; Tohge T; Fernie AR; Jikumaru Y; Kotlinski M; Iwanicka-Nowicka R; Kalisiak K; Patryn J; Halibart-Puzio J; Kamiya Y; Davis SJ; Koblowska MK; Jerzmanowski A
    PLoS One; 2013; 8(3):e58588. PubMed ID: 23536800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cdx2 Regulates Gene Expression through Recruitment of Brg1-associated Switch-Sucrose Non-fermentable (SWI-SNF) Chromatin Remodeling Activity.
    Nguyen TT; Savory JGA; Brooke-Bisschop T; Ringuette R; Foley T; Hess BL; Mulatz KJ; Trinkle-Mulcahy L; Lohnes D
    J Biol Chem; 2017 Feb; 292(8):3389-3399. PubMed ID: 28082674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modular Organization and Assembly of SWI/SNF Family Chromatin Remodeling Complexes.
    Mashtalir N; D'Avino AR; Michel BC; Luo J; Pan J; Otto JE; Zullow HJ; McKenzie ZM; Kubiak RL; St Pierre R; Valencia AM; Poynter SJ; Cassel SH; Ranish JA; Kadoch C
    Cell; 2018 Nov; 175(5):1272-1288.e20. PubMed ID: 30343899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BAFfling pathologies: Alterations of BAF complexes in cancer.
    Arnaud O; Le Loarer F; Tirode F
    Cancer Lett; 2018 Apr; 419():266-279. PubMed ID: 29374542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel mechanism of antagonism between ATP-dependent chromatin remodeling complexes regulates RNR3 expression.
    Tomar RS; Psathas JN; Zhang H; Zhang Z; Reese JC
    Mol Cell Biol; 2009 Jun; 29(12):3255-65. PubMed ID: 19349301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organization, genomic targeting, and assembly of three distinct SWI/SNF chromatin remodeling complexes in Arabidopsis.
    Fu W; Yu Y; Shu J; Yu Z; Zhong Y; Zhu T; Zhang Z; Liang Z; Cui Y; Chen C; Li C
    Plant Cell; 2023 Jun; 35(7):2464-2483. PubMed ID: 37062961
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bromodomain-containing proteins BRD1, BRD2, and BRD13 are core subunits of SWI/SNF complexes and vital for their genomic targeting in Arabidopsis.
    Yu Y; Fu W; Xu J; Lei Y; Song X; Liang Z; Zhu T; Liang Y; Hao Y; Yuan L; Li C
    Mol Plant; 2021 Jun; 14(6):888-904. PubMed ID: 33771698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BRM: the core ATPase subunit of SWI/SNF chromatin-remodelling complex-a tumour suppressor or tumour-promoting factor?
    Jancewicz I; Siedlecki JA; Sarnowski TJ; Sarnowska E
    Epigenetics Chromatin; 2019 Nov; 12(1):68. PubMed ID: 31722744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global identification of SWI/SNF targets reveals compensation by EP400.
    Martin BJE; Ablondi EF; Goglia C; Mimoso CA; Espinel-Cabrera PR; Adelman K
    Cell; 2023 Nov; 186(24):5290-5307.e26. PubMed ID: 37922899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reactivation of the G1 enhancer landscape underlies core circuitry addiction to SWI/SNF.
    Cermakova K; Tao L; Dejmek M; Sala M; Montierth MD; Chan YS; Patel I; Chambers C; Loeza Cabrera M; Hoffman D; Parchem RJ; Wang W; Nencka R; Barbieri E; Hodges HC
    Nucleic Acids Res; 2024 Jan; 52(1):4-21. PubMed ID: 37993417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of Saccharomyces cerevisiae HIS3 results in Gcn4p-dependent, SWI/SNF-dependent mobilization of nucleosomes over the entire gene.
    Kim Y; McLaughlin N; Lindstrom K; Tsukiyama T; Clark DJ
    Mol Cell Biol; 2006 Nov; 26(22):8607-22. PubMed ID: 16982689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Loss of the SWI/SNF-ATPase subunit members SMARCF1 (ARID1A), SMARCA2 (BRM), SMARCA4 (BRG1) and SMARCB1 (INI1) in oesophageal adenocarcinoma.
    Schallenberg S; Bork J; Essakly A; Alakus H; Buettner R; Hillmer AM; Bruns C; Schroeder W; Zander T; Loeser H; Gebauer F; Quaas A
    BMC Cancer; 2020 Jan; 20(1):12. PubMed ID: 31906887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The SWI/SNF chromatin remodeling complex helps resolve R-loop-mediated transcription-replication conflicts.
    Bayona-Feliu A; Barroso S; Muñoz S; Aguilera A
    Nat Genet; 2021 Jul; 53(7):1050-1063. PubMed ID: 33986538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epigenetic pioneering by SWI/SNF family remodelers.
    Ahmad K; Brahma S; Henikoff S
    Mol Cell; 2024 Jan; 84(2):194-201. PubMed ID: 38016477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SWI/SNF chromatin remodeling controls Notch-responsive enhancer accessibility.
    Pillidge Z; Bray SJ
    EMBO Rep; 2019 May; 20(5):. PubMed ID: 30914409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Bromodomains of the mammalian SWI/SNF (mSWI/SNF) ATPases Brahma (BRM) and Brahma Related Gene 1 (BRG1) promote chromatin interaction and are critical for skeletal muscle differentiation.
    Sharma T; Robinson DCL; Witwicka H; Dilworth FJ; Imbalzano AN
    Nucleic Acids Res; 2021 Aug; 49(14):8060-8077. PubMed ID: 34289068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.