These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 38427962)

  • 1. Physics-Informed Deep Learning Approach for Reintroducing Atomic Detail in Coarse-Grained Configurations of Multiple Poly(lactic acid) Stereoisomers.
    Christofi E; Bačová P; Harmandaris VA
    J Chem Inf Model; 2024 Mar; 64(6):1853-1867. PubMed ID: 38427962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep convolutional neural networks for generating atomistic configurations of multi-component macromolecules from coarse-grained models.
    Christofi E; Chazirakis A; Chrysostomou C; Nicolaou MA; Li W; Doxastakis M; Harmandaris VA
    J Chem Phys; 2022 Nov; 157(18):184903. PubMed ID: 36379782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Backmapping coarse-grained macromolecules: An efficient and versatile machine learning approach.
    Li W; Burkhart C; Polińska P; Harmandaris V; Doxastakis M
    J Chem Phys; 2020 Jul; 153(4):041101. PubMed ID: 32752654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temporally Coherent Backmapping of Molecular Trajectories From Coarse-Grained to Atomistic Resolution.
    Shmilovich K; Stieffenhofer M; Charron NE; Hoffmann M
    J Phys Chem A; 2022 Dec; 126(48):9124-9139. PubMed ID: 36417670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correction to "Physics-Informed Deep Learning Approach for Reintroducing Atomic Detail in Coarse-Grained Configurations of Multiple Poly(lactic acid) Stereoisomers".
    Christofi E; Bačová P; Harmandaris VA
    J Chem Inf Model; 2024 Sep; 64(17):6926. PubMed ID: 39158929
    [No Abstract]   [Full Text] [Related]  

  • 7. High-Resolution Coarse-Grained Modeling Using Oriented Coarse-Grained Sites.
    Haxton TK
    J Chem Theory Comput; 2015 Mar; 11(3):1244-54. PubMed ID: 26579771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiscale simulation of small peptides: consistent conformational sampling in atomistic and coarse-grained models.
    Bezkorovaynaya O; Lukyanov A; Kremer K; Peter C
    J Comput Chem; 2012 Apr; 33(9):937-49. PubMed ID: 22298285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The multiscale coarse-graining method. XI. Accurate interactions based on the centers of charge of coarse-grained sites.
    Cao Z; Voth GA
    J Chem Phys; 2015 Dec; 143(24):243116. PubMed ID: 26723601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accuracy, Transferability, and Efficiency of Coarse-Grained Models of Molecular Liquids.
    Guenza MG; Dinpajooh M; McCarty J; Lyubimov IY
    J Phys Chem B; 2018 Nov; 122(45):10257-10278. PubMed ID: 30153027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchical modelling of polystyrene melts: from soft blobs to atomistic resolution.
    Zhang G; Chazirakis A; Harmandaris VA; Stuehn T; Daoulas KC; Kremer K
    Soft Matter; 2019 Jan; 15(2):289-302. PubMed ID: 30543257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Equilibration of High Molecular Weight Polymer Melts: A Hierarchical Strategy.
    Zhang G; Moreira LA; Stuehn T; Daoulas KC; Kremer K
    ACS Macro Lett; 2014 Feb; 3(2):198-203. PubMed ID: 35590505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic structure at coarse-grained resolutions from supervised machine learning.
    Jackson NE; Bowen AS; Antony LW; Webb MA; Vishwanath V; de Pablo JJ
    Sci Adv; 2019 Mar; 5(3):eaav1190. PubMed ID: 30915396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid simulations: combining atomistic and coarse-grained force fields using virtual sites.
    Rzepiela AJ; Louhivuori M; Peter C; Marrink SJ
    Phys Chem Chem Phys; 2011 Jun; 13(22):10437-48. PubMed ID: 21494747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Configurational-Bias Monte Carlo Back-Mapping Algorithm for Efficient and Rapid Conversion of Coarse-Grained Water Structures into Atomistic Models.
    Loeffler TD; Chan H; Narayanan B; Cherukara MJ; Gray S; Sankaranarayanan SKRS
    J Phys Chem B; 2018 Jul; 122(28):7102-7110. PubMed ID: 29923722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance of Coarse Graining in Estimating Polymer Properties: Comparison with the Atomistic Model.
    Miwatani R; Takahashi KZ; Arai N
    Polymers (Basel); 2020 Feb; 12(2):. PubMed ID: 32046337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Going Backward: A Flexible Geometric Approach to Reverse Transformation from Coarse Grained to Atomistic Models.
    Wassenaar TA; Pluhackova K; Böckmann RA; Marrink SJ; Tieleman DP
    J Chem Theory Comput; 2014 Feb; 10(2):676-90. PubMed ID: 26580045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Temperature-Transferable Coarse-Grained Model for Poly(lactic Acid) Melts.
    Prasitnok O; Prasitnok K
    J Phys Chem B; 2024 Jul; 128(29):7280-7289. PubMed ID: 38988099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bypassing backmapping: Coarse-grained electronic property distributions using heteroscedastic Gaussian processes.
    Maier JC; Jackson NE
    J Chem Phys; 2022 Nov; 157(17):174102. PubMed ID: 36347700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The multiscale coarse-graining method. X. Improved algorithms for constructing coarse-grained potentials for molecular systems.
    Das A; Lu L; Andersen HC; Voth GA
    J Chem Phys; 2012 May; 136(19):194115. PubMed ID: 22612088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.