BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38428023)

  • 21. Modulatory effect of caffeic acid on cholinesterases inhibitory properties of donepezil.
    Agunloye OM; Oboh G
    J Complement Integr Med; 2017 Sep; 15(1):. PubMed ID: 28941354
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rivastigmine is a potent inhibitor of acetyl- and butyrylcholinesterase in Alzheimer's plaques and tangles.
    Eskander MF; Nagykery NG; Leung EY; Khelghati B; Geula C
    Brain Res; 2005 Oct; 1060(1-2):144-52. PubMed ID: 16212945
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanisms of cholinesterase inhibition by inorganic mercury.
    Frasco MF; Colletier JP; Weik M; Carvalho F; Guilhermino L; Stojan J; Fournier D
    FEBS J; 2007 Apr; 274(7):1849-61. PubMed ID: 17355286
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cholinesterase inhibitory activity of chlorophenoxy derivatives-Histamine H3 receptor ligands.
    Łażewska D; Jończyk J; Bajda M; Szałaj N; Więckowska A; Panek D; Moore C; Kuder K; Malawska B; Kieć-Kononowicz K
    Bioorg Med Chem Lett; 2016 Aug; 26(16):4140-5. PubMed ID: 27445168
    [TBL] [Abstract][Full Text] [Related]  

  • 25. New data on the structure of the acyl pocket in cholinesterases.
    Moralev SN
    Dokl Biochem; 2000; 375():215-7. PubMed ID: 11296473
    [No Abstract]   [Full Text] [Related]  

  • 26. Probing the mid-gorge of cholinesterases with spacer-modified bivalent quinazolinimines leads to highly potent and selective butyrylcholinesterase inhibitors.
    Chen X; Tikhonova IG; Decker M
    Bioorg Med Chem; 2011 Feb; 19(3):1222-35. PubMed ID: 21232964
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inhibition of acetyl- and butyrylcholinesterase and amylase release from canine pancreas.
    Oguchi Y; Dressel TD; Borner JW; Miller J; Goodale RL
    Pancreas; 1989; 4(4):423-8. PubMed ID: 2474812
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cholinesterases exhibiting aryl acylamidase activity in human amniotic fluid.
    Jayanthi LD; Balasubramanian N; Balasubramanian AS
    Clin Chim Acta; 1992 Feb; 205(3):157-66. PubMed ID: 1349516
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inhibition of Acetylcholinesterase and Butyrylcholinesterase by a Plant Secondary Metabolite Boldine.
    Kostelnik A; Pohanka M
    Biomed Res Int; 2018; 2018():9634349. PubMed ID: 29850593
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ursolic and oleanolic acid derivatives with cholinesterase inhibiting potential.
    Loesche A; Köwitsch A; Lucas SD; Al-Halabi Z; Sippl W; Al-Harrasi A; Csuk R
    Bioorg Chem; 2019 Apr; 85():23-32. PubMed ID: 30599410
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Novel tetrahydroacridine derivatives with iodobenzoic acid moiety as multifunctional acetylcholinesterase inhibitors.
    Skibiński R; Czarnecka K; Girek M; Bilichowski I; Chufarova N; Mikiciuk-Olasik E; Szymański P
    Chem Biol Drug Des; 2018 Feb; 91(2):505-518. PubMed ID: 28944565
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Carbamates with differential mechanism of inhibition toward acetylcholinesterase and butyrylcholinesterase.
    Darvesh S; Darvesh KV; McDonald RS; Mataija D; Walsh R; Mothana S; Lockridge O; Martin E
    J Med Chem; 2008 Jul; 51(14):4200-12. PubMed ID: 18570368
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design, synthesis, and evaluation of novel cinnamic acid-tryptamine hybrid for inhibition of acetylcholinesterase and butyrylcholinesterase.
    Ghafary S; Ghobadian R; Mahdavi M; Nadri H; Moradi A; Akbarzadeh T; Najafi Z; Sharifzadeh M; Edraki N; Moghadam FH; Amini M
    Daru; 2020 Dec; 28(2):463-477. PubMed ID: 32372339
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Diagnoses of Pathological States Based on Acetylcholinesterase and Butyrylcholinesterase.
    Pohanka M
    Curr Med Chem; 2020; 27(18):2994-3011. PubMed ID: 30706778
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The mechanism and benefit of human butyrylcholinesterase activation by what would otherwise be inhibitors.
    Stojan J
    Chem Biol Interact; 2019 Aug; 308():350-356. PubMed ID: 31173753
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biochemical differentiation of cholinesterases from normal and Alzheimer's disease cortex.
    Ciro A; Park J; Burkhard G; Yan N; Geula C
    Curr Alzheimer Res; 2012 Jan; 9(1):138-43. PubMed ID: 21244353
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Cholinesterases: structure, role, and inhibition].
    Bosak A; Katalinić M; Kovarik Z
    Arh Hig Rada Toksikol; 2011 Jun; 62(2):175-90. PubMed ID: 21705306
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biochemical evaluation of photolabile precursors of choline and of carbamylcholine for potential time-resolved crystallographic studies on cholinesterases.
    Peng L; Silman I; Sussman J; Goeldner M
    Biochemistry; 1996 Aug; 35(33):10854-61. PubMed ID: 8718877
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The ratio of acetylcholinesterase to butyrylcholinesterase influences the specificity of assays for each enzyme in human brain.
    Huff FJ; Reiter CT; Rand JB
    J Neural Transm; 1989; 75(2):129-34. PubMed ID: 2918305
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In silico, theoretical biointerface analysis and in vitro kinetic analysis of amine compounds interaction with acetylcholinesterase and butyrylcholinesterase.
    Kandasamy S; Loganathan C; Sakayanathan P; Karthikeyan S; Stephen AD; Marimuthu DK; Ravichandran S; Sivalingam V; Thayumanavan P
    Int J Biol Macromol; 2021 Aug; 185():750-760. PubMed ID: 34216669
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.