These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 38428105)
21. Swimming with predators and pesticides: how environmental stressors affect the thermal physiology of tadpoles. Katzenberger M; Hammond J; Duarte H; Tejedo M; Calabuig C; Relyea RA PLoS One; 2014; 9(5):e98265. PubMed ID: 24869960 [TBL] [Abstract][Full Text] [Related]
23. Impacts of horticultural environments on Rhinella arenarum (Anura, Bufonidae) populations: exploring genocytotoxic damage and demographic life history traits. Babini MS; Bionda CL; Martino AL; Peltzer PM Environ Sci Pollut Res Int; 2024 Mar; 31(14):21235-21248. PubMed ID: 38388975 [TBL] [Abstract][Full Text] [Related]
24. Adverse effects of the pesticide chlorpyrifos on the physiology of a damselfly only occur at the cold and hot extremes of a temperature gradient. Verheyen J; Cuypers K; Stoks R Environ Pollut; 2023 Jun; 326():121438. PubMed ID: 36963457 [TBL] [Abstract][Full Text] [Related]
25. Early life exposure to high temperature enhances locomotor performance without alteration in thermal ecology in different populations of Thoropa taophora tadpoles (Anura, Cycloramphidae). Carvalho JE; Gallo AC; Brasileiro CA; Schaeffer PJ J Exp Biol; 2024 Aug; 227(16):. PubMed ID: 39054944 [TBL] [Abstract][Full Text] [Related]
26. Synergy between glyphosate- and cypermethrin-based pesticides during acute exposures in tadpoles of the common South American toad Rhinella arenarum. Brodeur JC; Poliserpi MB; D'Andrea MF; Sánchez M Chemosphere; 2014 Oct; 112():70-6. PubMed ID: 25048890 [TBL] [Abstract][Full Text] [Related]
27. Roundup Original DI® and thermal stress affect survival, morphology and thermal tolerance in tadpoles of Boana faber (Hylidae, Anura). Alves-Ferreira G; Katzenberger M; Fava FG; Costa RN; Carilo Filho LM; Solé M Ecotoxicology; 2023 Jan; 32(1):93-101. PubMed ID: 36653510 [TBL] [Abstract][Full Text] [Related]
28. Health status of tadpoles and metamorphs of Rhinella arenarum (Anura, Bufonidae) that inhabit agroecosystems and its implications for land use. Babini MS; Bionda CL; Salas NE; Martino AL Ecotoxicol Environ Saf; 2015 Aug; 118():118-125. PubMed ID: 25919343 [TBL] [Abstract][Full Text] [Related]
29. Effects of mancozeb on heat Shock protein 70 (HSP70) and its relationship with the thermal physiology of Physalaemus henselii (Peters, 1872) tadpoles (Anura: Leptodactylidae). Azambuja G; Martins IK; Franco JL; Dos Santos TG J Therm Biol; 2021 May; 98():102911. PubMed ID: 34016338 [TBL] [Abstract][Full Text] [Related]
30. The integrated biomarker response in three anuran species larvae at sublethal concentrations of cypermethrin, chlorpyrifos, glyphosate, and glufosinate-ammonium. Bassó A; Devin S; Peltzer PM; Attademo AM; Lajmanovich RC J Environ Sci Health B; 2022; 57(9):687-696. PubMed ID: 35852372 [TBL] [Abstract][Full Text] [Related]
31. Sublethal and lethal effects on Rhinella arenarum (Anura, Bufonidae) tadpoles exerted by the pirimicarb-containing technical formulation insecticide Aficida. Vera Candioti J; Natale GS; Soloneski S; Ronco AE; Larramendy ML Chemosphere; 2010 Jan; 78(3):249-55. PubMed ID: 19954811 [TBL] [Abstract][Full Text] [Related]
32. Toxicity characterization and environmental risk assessment of Mancozeb on the South American common toad Rhinella arenarum. Asparch Y; Svartz G; Pérez Coll C Environ Sci Pollut Res Int; 2020 Jan; 27(3):3034-3042. PubMed ID: 31838683 [TBL] [Abstract][Full Text] [Related]
33. [Trophic ecology in tadpoles of Rhinella arenarum (Anura: Bufonidae) in agroecosystems and their possible implications for conservation]. Bionda C; Gari N; Luque E; Salas N; Lajmanovich R; Martino A Rev Biol Trop; 2012 Jun; 60(2):771-9. PubMed ID: 23894945 [TBL] [Abstract][Full Text] [Related]
34. Competition magnifies the impact of a pesticide in a warming world by reducing heat tolerance and increasing autotomy. Op de Beeck L; Verheyen J; Stoks R Environ Pollut; 2018 Feb; 233():226-234. PubMed ID: 29096295 [TBL] [Abstract][Full Text] [Related]
35. Current and future daily temperature fluctuations make a pesticide more toxic: Contrasting effects on life history and physiology. Verheyen J; Stoks R Environ Pollut; 2019 May; 248():209-218. PubMed ID: 30798022 [TBL] [Abstract][Full Text] [Related]
36. Biochemical biomarkers of sublethal effects in Rhinella arenarum late gastrula exposed to the organophosphate chlorpyrifos. Sotomayor V; Chiriotto TS; Pechen AM; Venturino A Pestic Biochem Physiol; 2015 Mar; 119():48-53. PubMed ID: 25868816 [TBL] [Abstract][Full Text] [Related]
37. Extreme temperatures in the adult stage shape delayed effects of larval pesticide stress: a comparison between latitudes. Janssens L; Dinh Van K; Stoks R Aquat Toxicol; 2014 Mar; 148():74-82. PubMed ID: 24463491 [TBL] [Abstract][Full Text] [Related]
38. Developmental and polyamine metabolism alterations in Rhinella arenarum embryos exposed to the organophosphate chlorpyrifos. Sotomayor V; Lascano C; de D'Angelo AM; Venturino A Environ Toxicol Chem; 2012 Sep; 31(9):2052-8. PubMed ID: 22714647 [TBL] [Abstract][Full Text] [Related]
39. Vulnerability to climate warming of Liolaemus pictus (Squamata, Liolaemidae), a lizard from the cold temperate climate in Patagonia, Argentina. Kubisch EL; Fernández JB; Ibargüengoytía NR J Comp Physiol B; 2016 Feb; 186(2):243-53. PubMed ID: 26679700 [TBL] [Abstract][Full Text] [Related]
40. Ecotoxicological effects of the emerging contaminant ivermectin on Rhinella arenarum: A comparative study of active ingredient and commercial formulation. Peluso J; Martínez Chehda A; Olivelli MS; Aronzon CM Comp Biochem Physiol C Toxicol Pharmacol; 2024 Sep; 283():109965. PubMed ID: 38885750 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]