These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38428205)

  • 1. Cell adhesion affects the properties of interstitial fluid flow: A study using multiscale poroelastic composite modeling.
    Dehghani H; Holzapfel GA; Mittelbronn M; Zilian A
    J Mech Behav Biomed Mater; 2024 May; 153():106486. PubMed ID: 38428205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical modeling of bone as a multiscale poroelastic material by the homogenization technique.
    Perrin E; Bou-Saïd B; Massi F
    J Mech Behav Biomed Mater; 2019 Mar; 91():373-382. PubMed ID: 30660050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interstitial fluid flow in the osteon with spatial gradients of mechanical properties: a finite element study.
    Rémond A; Naïli S; Lemaire T
    Biomech Model Mechanobiol; 2008 Dec; 7(6):487-95. PubMed ID: 17990014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiscale modeling of lymphatic drainage from tissues using homogenization theory.
    Roose T; Swartz MA
    J Biomech; 2012 Jan; 45(1):107-15. PubMed ID: 22036032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A coupled approach for fluid saturated poroelastic media and immersed solids for modeling cell-tissue interactions.
    Rauch AD; Vuong AT; Yoshihara L; Wall WA
    Int J Numer Method Biomed Eng; 2018 Nov; 34(11):e3139. PubMed ID: 30070046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study on the biomechanical responses of the loaded bone in macroscale and mesoscale by multiscale poroelastic FE analysis.
    Yu W; Wu X; Cen H; Guo Y; Li C; Wang Y; Qin Y; Chen W
    Biomed Eng Online; 2019 Dec; 18(1):122. PubMed ID: 31870380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blood and interstitial flow in the hierarchical pore space architecture of bone tissue.
    Cowin SC; Cardoso L
    J Biomech; 2015 Mar; 48(5):842-54. PubMed ID: 25666410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microstructural changes associated with osteoporosis negatively affect loading-induced fluid flow around osteocytes in cortical bone.
    Gatti V; Azoulay EM; Fritton SP
    J Biomech; 2018 Jan; 66():127-136. PubMed ID: 29217091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Macro-scale models for fluid flow in tumour tissues: impact of microstructure properties.
    Vaghi C; Fanciullino R; Benzekry S; Poignard C
    J Math Biol; 2022 Feb; 84(4):27. PubMed ID: 35224711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A computational model of glioma reveals opposing, stiffness-sensitive effects of leaky vasculature and tumor growth on tissue mechanical stress and porosity.
    Rey JA; Ewing JR; Sarntinoranont M
    Biomech Model Mechanobiol; 2021 Oct; 20(5):1981-2000. PubMed ID: 34363553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poroelastic analysis of interstitial fluid flow in a single lamellar trabecula subjected to cyclic loading.
    Kameo Y; Ootao Y; Ishihara M
    Biomech Model Mechanobiol; 2016 Apr; 15(2):361-70. PubMed ID: 26081726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model of interstitial pressure as a result of cyclical changes in the capillary wall fluid transport.
    Kurbel S; Kurbel B; Belovari T; Marić S; Steiner R; Bozíć D
    Med Hypotheses; 2001 Aug; 57(2):161-6. PubMed ID: 11461165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction between the interstitial fluid and the extracellular matrix in confined indentation.
    Lu Y; Wang W
    J Biomech Eng; 2008 Aug; 130(4):041011. PubMed ID: 18601453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Freezing-induced fluid-matrix interaction in poroelastic material.
    Han B; Miller JD; Jung JK
    J Biomech Eng; 2009 Feb; 131(2):021002. PubMed ID: 19102561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impact of vascular volume fraction and compressibility of the interstitial matrix on vascularised poroelastic tissues.
    Mascheroni P; Penta R; Merodio J
    Biomech Model Mechanobiol; 2023 Dec; 22(6):1901-1917. PubMed ID: 37587330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cortex tissue relaxation and slow to medium load rates dependency can be captured by a two-phase flow poroelastic model.
    Urcun S; Rohan PY; Sciumè G; Bordas SPA
    J Mech Behav Biomed Mater; 2022 Feb; 126():104952. PubMed ID: 34906865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupling between elastic strain and interstitial fluid flow: ramifications for poroelastic imaging.
    Leiderman R; Barbone PE; Oberai AA; Bamber JC
    Phys Med Biol; 2006 Dec; 51(24):6291-313. PubMed ID: 17148819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A computational study of amoeboid motility in 3D: the role of extracellular matrix geometry, cell deformability, and cell-matrix adhesion.
    Campbell EJ; Bagchi P
    Biomech Model Mechanobiol; 2021 Feb; 20(1):167-191. PubMed ID: 32772275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interstitial pressure, volume, and flow during infusion into brain tissue.
    Basser PJ
    Microvasc Res; 1992 Sep; 44(2):143-65. PubMed ID: 1474925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Multiscale Study of CFRP Based on Asymptotic Homogenization with Application to Mechanical Analysis of Composite Pressure Vessels.
    Zhang N; Gao S; Song M; Chen Y; Zhao X; Liang J; Feng J
    Polymers (Basel); 2022 Jul; 14(14):. PubMed ID: 35890592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.