These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38428294)

  • 1. An environmentally-friendly permeable liquid salt pyrolysis method based on capillary heat transfer for recycling waste insulator materials.
    Yu D; Zhan L; Xu Z
    J Hazard Mater; 2024 May; 469():133815. PubMed ID: 38428294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyrolysis characteristics and pyrolysis products separation for recycling organic materials from waste liquid crystal display panels.
    Wang R; Xu Z
    J Hazard Mater; 2016 Jan; 302():45-56. PubMed ID: 26444486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Separating and Recycling Plastic, Glass, and Gallium from Waste Solar Cell Modules by Nitrogen Pyrolysis and Vacuum Decomposition.
    Zhang L; Xu Z
    Environ Sci Technol; 2016 Sep; 50(17):9242-50. PubMed ID: 27501125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An energy-saving and environment-friendly technology for debromination of plastic waste: Novel models of heat transfer and movement behavior of bromine.
    Zhu J; Huang T; Huang Z; Qin B; Tang Y; Ruan J; Xu Z
    J Hazard Mater; 2022 Jan; 421():126814. PubMed ID: 34396969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmentally friendly approach for the recovery of metallic fraction from waste printed circuit boards using pyrolysis and ultrasonication.
    Jadhao PR; Ahmad E; Pant KK; Nigam KDP
    Waste Manag; 2020 Dec; 118():150-160. PubMed ID: 32892092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of the effect of heating rate on pyrolysis kinetics and product composition of copper-containing waste circuit boards.
    Li C; Xia H; Liu C; Zeng K; Zhang L
    Environ Sci Pollut Res Int; 2023 Mar; 30(12):33075-33089. PubMed ID: 36471150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel Route to Produce Hydrocarbons from Woody Biomass Using Molten Salts.
    Sridharan B; Genuino HC; Jardan D; Wilbers E; van de Bovenkamp HH; Winkelman JGM; Venderbosch RH; Heeres HJ
    Energy Fuels; 2022 Oct; 36(20):12628-12640. PubMed ID: 36304983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of plasma off-gas treatment from spent ion exchange resin pyrolysis.
    Castro HA; Luca V; Bianchi HL
    Environ Sci Pollut Res Int; 2018 Aug; 25(22):21403-21410. PubMed ID: 28337628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pyrolysis of hydrazine hydrate waste salt: Thermal behaviors and transformation characteristics of organics under aerobic/anaerobic conditions.
    Feng L; Tian B; Zhang L; Yang M
    J Environ Manage; 2022 Dec; 323():116304. PubMed ID: 36261970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of molten salt thermal treatment on the properties improvement of waste tire pyrolytic char.
    Zou C; Ren Y; Li S; Hu H; Cao C; Tang H; Li X; Yao H
    Waste Manag; 2022 Jul; 149():53-59. PubMed ID: 35714436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study on synergistic pyrolysis and kinetics of mixed plastics based on spent fluid-catalytic-cracking catalyst.
    Wang K; Bian H; Lai Q; Chen Y; Li Z; Hao Y; Yan L; Wang C; Tian X
    Environ Sci Pollut Res Int; 2023 May; 30(25):66665-66682. PubMed ID: 37099103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pyrolysis and utilization of nonmetal materials in waste printed circuit boards: Debromination pyrolysis, temperature-controlled condensation, and synthesis of oil-based resin.
    Gao R; Xu Z
    J Hazard Mater; 2019 Feb; 364():1-10. PubMed ID: 30336331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel trends in the thermo-chemical recycling of plastics from WEEE containing brominated flame retardants.
    Charitopoulou MA; Kalogiannis KG; Lappas AA; Achilias DS
    Environ Sci Pollut Res Int; 2021 Nov; 28(42):59190-59213. PubMed ID: 32638300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of pyrolysis process to remove and recover liquid crystal and films from waste liquid crystal display glass.
    Lu R; Ma E; Xu Z
    J Hazard Mater; 2012 Dec; 243():311-8. PubMed ID: 23127276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Waste tire pyrolysis and desulfurization of tire pyrolytic oil (TPO) - A review.
    Mello M; Rutto H; Seodigeng T
    J Air Waste Manag Assoc; 2023 Mar; 73(3):159-177. PubMed ID: 36269581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Life cycle environmental impacts of chemical recycling via pyrolysis of mixed plastic waste in comparison with mechanical recycling and energy recovery.
    Jeswani H; Krüger C; Russ M; Horlacher M; Antony F; Hann S; Azapagic A
    Sci Total Environ; 2021 May; 769():144483. PubMed ID: 33486181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Employing CO
    Lee J; Choi D; Tsang YF; Oh JI; Kwon EE
    Environ Pollut; 2017 May; 224():476-483. PubMed ID: 28256357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy recovery from waste printed circuit boards using microwave pyrolysis: product characteristics, reaction kinetics, and benefits.
    Huang YF; Lo SL
    Environ Sci Pollut Res Int; 2020 Dec; 27(34):43274-43282. PubMed ID: 32734544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Material recovery from electronic waste using pyrolysis: Emissions measurements and risk assessment.
    Sahle-Demessie E; Mezgebe B; Dietrich J; Shan Y; Harmon S; Lee CC
    J Environ Chem Eng; 2021 Feb; 9(1):. PubMed ID: 33747764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Red mud-molten salt composites for medium-high temperature thermal energy storage and waste heat recovery applications.
    Anagnostopoulos A; Navarro ME; Stefanidou M; Ding Y; Gaidajis G
    J Hazard Mater; 2021 Jul; 413():125407. PubMed ID: 33930958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.