These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38428294)

  • 21. Vacuum pyrolysis characteristics and parameter optimization of recycling organic materials from waste tantalum capacitors.
    Chen Z; Niu B; Zhang L; Xu Z
    J Hazard Mater; 2018 Jan; 342():192-200. PubMed ID: 28829984
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development and characterization of a quaternary nitrate based molten salt heat transfer fluid for concentrated solar power plant.
    Kwasi-Effah CC; Egware HO; Obanor AI; Ighodaro OO
    Heliyon; 2023 May; 9(5):e16096. PubMed ID: 37215795
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recycling of Wastes Plastics and Tires from Automotive Industry.
    Čabalová I; Ház A; Krilek J; Bubeníková T; Melicherčík J; Kuvik T
    Polymers (Basel); 2021 Jul; 13(13):. PubMed ID: 34279354
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Catalytic pyrolysis of waste printed circuit boards to organic bromine: reaction mechanism and comprehensive recovery.
    Li C; Liu C; Xia H; Zhang L; Liu D; Shu B
    Environ Sci Pollut Res Int; 2023 Oct; 30(49):108288-108300. PubMed ID: 37743446
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of Heating Rate and Temperature on the Thermal Pyrolysis of Expanded Polystyrene Post-Industrial Waste.
    Gonzalez-Aguilar AM; Cabrera-Madera VP; Vera-Rozo JR; Riesco-Ávila JM
    Polymers (Basel); 2022 Nov; 14(22):. PubMed ID: 36433086
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A comprehensive study on the oxidative pyrolysis of epoxy resin from fiber/epoxy composites: Product characteristics and kinetics.
    Ma C; Sánchez-Rodríguez D; Kamo T
    J Hazard Mater; 2021 Jun; 412():125329. PubMed ID: 33951877
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Economic assessment of a 40,000 t/y mixed plastic waste pyrolysis plant using direct heat treatment with molten metal: A case study of a plant located in Belgium.
    Riedewald F; Patel Y; Wilson E; Santos S; Sousa-Gallagher M
    Waste Manag; 2021 Feb; 120():698-707. PubMed ID: 33191052
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of brominated flame retardant on the pyrolysis products of polymers originating in WEEE.
    Charitopoulou MA; Papadopoulou L; Achilias DS
    Environ Sci Pollut Res Int; 2022 Apr; 29(20):29570-29582. PubMed ID: 34312751
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Zero-Waste Recycling of Fiber/Epoxy from Scrap Wind Turbine Blades for Effective Resource Utilization.
    Du C; Jin G; Zhang L; Tong B; Wang B; Zhang G; Cheng Y
    Polymers (Basel); 2022 Dec; 14(24):. PubMed ID: 36559776
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermal and catalytic pyrolysis of a mixture of plastics from small waste electrical and electronic equipment (WEEE).
    Santella C; Cafiero L; De Angelis D; La Marca F; Tuffi R; Vecchio Ciprioti S
    Waste Manag; 2016 Aug; 54():143-52. PubMed ID: 27184448
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Catalytic pyrolysis of mechanically non-recyclable waste plastics mixture: Kinetics and pyrolysis in laboratory-scale reactor.
    Kremer I; Tomić T; Katančić Z; Erceg M; Papuga S; Vuković JP; Schneider DR
    J Environ Manage; 2021 Oct; 296():113145. PubMed ID: 34271358
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recent Advancements in Pyrolysis of Halogen-Containing Plastics for Resource Recovery and Halogen Upcycling: A State-of-the-Art Review.
    Ma C; Kumagai S; Saito Y; Yoshioka T; Huang X; Shao Y; Ran J; Sun L
    Environ Sci Technol; 2024 Jan; 58(3):1423-1440. PubMed ID: 38197317
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Novel waste printed circuit board recycling process with molten salt.
    Riedewald F; Sousa-Gallagher M
    MethodsX; 2015; 2():100-6. PubMed ID: 26150977
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Investigation of pyrolysis for the recovery of metallic values from ball grid arrays.
    Mir S; Dhawan N
    Environ Sci Pollut Res Int; 2023 Aug; 30(39):90180-90194. PubMed ID: 36692715
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Algae Pyrolysis in Molten NaOH-Na
    Li J; Zeng K; Zhong D; Flamant G; Nzihou A; White CE; Yang H; Chen H
    Environ Sci Technol; 2023 Apr; 57(16):6485-6493. PubMed ID: 37043626
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Efficient reclamation of carbon fibers from epoxy composite waste through catalytic pyrolysis in molten ZnCl
    Wu T; Zhang W; Jin X; Liang X; Sui G; Yang X
    RSC Adv; 2018 Dec; 9(1):377-388. PubMed ID: 35521567
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molten hydroxide for detoxification of chlorine-containing waste: Unraveling chlorine retention efficiency and chlorine salt enrichment.
    Dai S; Zheng Y; Zhao Y; Chen Y; Niu D
    J Environ Sci (China); 2019 Aug; 82():192-202. PubMed ID: 31133264
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Scrap tyre recycling process with molten zinc as direct heat transfer and solids separation fluid: A new reactor concept.
    Riedewald F; Goode K; Sexton A; Sousa-Gallagher MJ
    MethodsX; 2016; 3():399-406. PubMed ID: 27274458
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pyrolysis-based separation mechanism for waste crystalline silicon photovoltaic modules by a two-stage heating treatment.
    Wang R; Song E; Zhang C; Zhuang X; Ma E; Bai J; Yuan W; Wang J
    RSC Adv; 2019 Jun; 9(32):18115-18123. PubMed ID: 35515232
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enabling the recycling of metals from the shredder light fraction derived from waste of electrical and electronic equipment via continuous pyrolysis process.
    Diaz F; Latacz D; Friedrich B
    Waste Manag; 2023 Dec; 172():335-346. PubMed ID: 37948829
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.