These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 38428569)
1. Sirtuin dysregulation in Parkinson's disease: Implications of acetylation and deacetylation processes. Dhiman S; Mannan A; Taneja A; Mohan M; Singh TG Life Sci; 2024 Apr; 342():122537. PubMed ID: 38428569 [TBL] [Abstract][Full Text] [Related]
2. Pathological histone acetylation in Parkinson's disease: Neuroprotection and inhibition of microglial activation through SIRT 2 inhibition. Harrison IF; Smith AD; Dexter DT Neurosci Lett; 2018 Feb; 666():48-57. PubMed ID: 29273397 [TBL] [Abstract][Full Text] [Related]
3. Protective role of SIRT5 against motor deficit and dopaminergic degeneration in MPTP-induced mice model of Parkinson's disease. Liu L; Peritore C; Ginsberg J; Shih J; Arun S; Donmez G Behav Brain Res; 2015 Mar; 281():215-21. PubMed ID: 25541039 [TBL] [Abstract][Full Text] [Related]
4. Imbalance of Lysine Acetylation Contributes to the Pathogenesis of Parkinson's Disease. Wang R; Sun H; Wang G; Ren H Int J Mol Sci; 2020 Sep; 21(19):. PubMed ID: 33003340 [TBL] [Abstract][Full Text] [Related]
6. The interplay between neuroinflammatory pathways and Parkinson's disease. Eser P; Kocabicak E; Bekar A; Temel Y Exp Neurol; 2024 Feb; 372():114644. PubMed ID: 38061555 [TBL] [Abstract][Full Text] [Related]
7. Regulation and protection of mitochondrial physiology by sirtuins. Pereira CV; Lebiedzinska M; Wieckowski MR; Oliveira PJ Mitochondrion; 2012 Jan; 12(1):66-76. PubMed ID: 21787885 [TBL] [Abstract][Full Text] [Related]
8. RGS Proteins as Critical Regulators of Motor Function and Their Implications in Parkinson's Disease. Ahlers-Dannen KE; Spicer MM; Fisher RA Mol Pharmacol; 2020 Dec; 98(6):730-738. PubMed ID: 32015009 [TBL] [Abstract][Full Text] [Related]
10. Sirt3 protects dopaminergic neurons from mitochondrial oxidative stress. Shi H; Deng HX; Gius D; Schumacker PT; Surmeier DJ; Ma YC Hum Mol Genet; 2017 May; 26(10):1915-1926. PubMed ID: 28369333 [TBL] [Abstract][Full Text] [Related]
11. Mitochondrial Sirtuins in Parkinson's Disease. He L; Wang J; Yang Y; Li J; Tu H Neurochem Res; 2022 Jun; 47(6):1491-1502. PubMed ID: 35220492 [TBL] [Abstract][Full Text] [Related]
12. Potassium Channels in Parkinson's Disease: Potential Roles in Its Pathogenesis and Innovative Molecular Targets for Treatment. Chen X; Feng Y; Quinn RJ; Pountney DL; Richardson DR; Mellick GD; Ma L Pharmacol Rev; 2023 Jul; 75(4):758-788. PubMed ID: 36918260 [TBL] [Abstract][Full Text] [Related]
13. IDH2 deficiency promotes mitochondrial dysfunction and dopaminergic neurotoxicity: implications for Parkinson's disease. Kim H; Kim SH; Cha H; Kim SR; Lee JH; Park JW Free Radic Res; 2016 Aug; 50(8):853-60. PubMed ID: 27142242 [TBL] [Abstract][Full Text] [Related]
14. Mitochondrial dysfunction-induced H3K27 hyperacetylation perturbs enhancers in Parkinson's disease. Huang M; Lou D; Charli A; Kong D; Jin H; Zenitsky G; Anantharam V; Kanthasamy A; Wang Z; Kanthasamy AG JCI Insight; 2021 Sep; 6(17):. PubMed ID: 34494552 [TBL] [Abstract][Full Text] [Related]
15. Uncovering Novel Therapeutic Targets for Parkinson's Disease. Soni R; Delvadia P; Joharapurkar A; Shah J ACS Chem Neurosci; 2023 Jun; 14(11):1935-1949. PubMed ID: 37227448 [TBL] [Abstract][Full Text] [Related]
16. Multifaced role of protein deacetylase sirtuins in neurodegenerative disease. Gupta R; Ambasta RK; Kumar P Neurosci Biobehav Rev; 2022 Jan; 132():976-997. PubMed ID: 34742724 [TBL] [Abstract][Full Text] [Related]
17. Epigenetic targeting of histone deacetylase: therapeutic potential in Parkinson's disease? Harrison IF; Dexter DT Pharmacol Ther; 2013 Oct; 140(1):34-52. PubMed ID: 23711791 [TBL] [Abstract][Full Text] [Related]