BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38428763)

  • 1. Identification and characterization of an ene-reductase from Corynebacterium casei.
    Wu S; Ma X; Yan H
    Int J Biol Macromol; 2024 Apr; 264(Pt 1):130427. PubMed ID: 38428763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of a novel ene reductase from
    Zhang B; Sun J; Zheng Y; Mao X; Lin J; Wei D
    RSC Adv; 2022 May; 12(22):13924-13931. PubMed ID: 35558851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemical characterization and substrate profiling of a new NADH-dependent enoate reductase from Lactobacillus casei.
    Gao X; Ren J; Wu Q; Zhu D
    Enzyme Microb Technol; 2012 Jun; 51(1):26-34. PubMed ID: 22579387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asymmetric Reduction of (R)-Carvone through a Thermostable and Organic-Solvent-Tolerant Ene-Reductase.
    Tischler D; Gädke E; Eggerichs D; Gomez Baraibar A; Mügge C; Scholtissek A; Paul CE
    Chembiochem; 2020 Apr; 21(8):1217-1225. PubMed ID: 31692216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative characterization of novel ene-reductases from cyanobacteria.
    Fu Y; Castiglione K; Weuster-Botz D
    Biotechnol Bioeng; 2013 May; 110(5):1293-301. PubMed ID: 23280373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An ene reductase from Clavispora lusitaniae for asymmetric reduction of activated alkenes.
    Ni Y; Yu HL; Lin GQ; Xu JH
    Enzyme Microb Technol; 2014 Mar; 56():40-5. PubMed ID: 24564901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of an ene-reductase from Meyerozyma guilliermondii for asymmetric bioreduction of α,β-unsaturated compounds.
    Zhang B; Zheng L; Lin J; Wei D
    Biotechnol Lett; 2016 Sep; 38(9):1527-34. PubMed ID: 27193896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Asymmetric Ene-Reduction of α,β-Unsaturated Compounds by F
    Kang SW; Antoney J; Frkic RL; Lupton DW; Speight R; Scott C; Jackson CJ
    Biochemistry; 2023 Feb; 62(3):873-891. PubMed ID: 36637210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two new ene-reductases from photosynthetic extremophiles enlarge the panel of old yellow enzymes: CtOYE and GsOYE.
    Robescu MS; Niero M; Hall M; Cendron L; Bergantino E
    Appl Microbiol Biotechnol; 2020 Mar; 104(5):2051-2066. PubMed ID: 31930452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rhodococcus strains as source for ene-reductase activity.
    Chen BS; Médici R; van der Helm MP; van Zwet Y; Gjonaj L; van der Geest R; Otten LG; Hanefeld U
    Appl Microbiol Biotechnol; 2018 Jul; 102(13):5545-5556. PubMed ID: 29705954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loop 6 and the β-hairpin flap are structural hotspots that determine cofactor specificity in the FMN-dependent family of ene-reductases.
    Kerschbaumer B; Totaro MG; Friess M; Breinbauer R; Bijelic A; Macheroux P
    FEBS J; 2024 Apr; 291(7):1560-1574. PubMed ID: 38263933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asymmetric Ene-Reduction by F
    Kang SW; Antoney J; Lupton DW; Speight R; Scott C; Jackson CJ
    Chembiochem; 2023 Apr; 24(8):e202200797. PubMed ID: 36716144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stereoselective synthesis of (R)-phenylephrine using recombinant Escherichia coli cells expressing a novel short-chain dehydrogenase/reductase gene from Serratia marcescens BCRC 10948.
    Peng GJ; Kuan YC; Chou HY; Fu TK; Lin JS; Hsu WH; Yang MT
    J Biotechnol; 2014 Jan; 170():6-9. PubMed ID: 24291189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enantioselective synthesis of enantiopure chiral alcohols using carbonyl reductases screened from Yarrowia lipolytica.
    Zhang HL; Zhang C; Pei CH; Han MN; Li W
    J Appl Microbiol; 2019 Jan; 126(1):127-137. PubMed ID: 30291666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of four ene reductases and their preliminary exploration in the asymmetric synthesis of (R)-dihydrocarvone and (R)-profen derivatives.
    Shi Q; Jia Y; Wang H; Li S; Li H; Guo J; Dou T; Qin B; You S
    Enzyme Microb Technol; 2021 Oct; 150():109880. PubMed ID: 34489033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel NADPH-dependent reductase of Sulfobacillus acidophilus TPY phenol hydroxylase: expression, characterization, and functional analysis.
    Li M; Guo W; Chen X
    Appl Microbiol Biotechnol; 2016 Dec; 100(24):10417-10428. PubMed ID: 27376793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biocatalytic properties of a recombinant aldo-keto reductase with broad substrate spectrum and excellent stereoselectivity.
    Ni Y; Li CX; Ma HM; Zhang J; Xu JH
    Appl Microbiol Biotechnol; 2011 Feb; 89(4):1111-8. PubMed ID: 20981419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemoselective biocatalytic reduction of conjugated nitroalkenes: new application for an Escherichia coli BL21(DE3) expression strain.
    Jovanovic P; Jeremic S; Djokic L; Savic V; Radivojevic J; Maslak V; Ivkovic B; Vasiljevic B; Nikodinovic-Runic J
    Enzyme Microb Technol; 2014 Jun; 60():16-23. PubMed ID: 24835095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Rapid and High-Throughput Assay for the Estimation of Conversions of Ene-Reductase-Catalysed Reactions.
    Forchin MC; Crotti M; Gatti FG; Parmeggiani F; Brenna E; Monti D
    Chembiochem; 2015 Jul; 16(11):1571-3. PubMed ID: 26033160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A thermophilic-like ene-reductase originating from an acidophilic iron oxidizer.
    Scholtissek A; Ullrich SR; Mühling M; Schlömann M; Paul CE; Tischler D
    Appl Microbiol Biotechnol; 2017 Jan; 101(2):609-619. PubMed ID: 27542380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.