These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 38428803)

  • 21. A Step Forward for Smart Clothes─Fabric-Based Microfluidic Sensors for Wearable Health Monitoring.
    Zhang T; Ratajczak AM; Chen H; Terrell JA; Chen C
    ACS Sens; 2022 Dec; 7(12):3857-3866. PubMed ID: 36455259
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent advances in microfluidic technology of arterial thrombosis investigations.
    Lin J; Chen S; Zhang C; Liao J; Chen Y; Deng S; Mao Z; Zhang T; Tian N; Song Y; Zeng T
    Platelets; 2024 Dec; 35(1):2316743. PubMed ID: 38390892
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microfluidics technology for drug delivery: A review.
    Mancera-Andrade EI; Parsaeimehr A; Arevalo-Gallegos A; Ascencio-Favela G; Parra Saldivar R
    Front Biosci (Elite Ed); 2018 Jan; 10(1):74-91. PubMed ID: 28930605
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Directly embroidered microtubes for fluid transport in wearable applications.
    Rahimi R; Yu W; Ochoa M; Ziaie B
    Lab Chip; 2017 May; 17(9):1585-1593. PubMed ID: 28379278
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prospection of Microfluidics for Local Drug Delivery.
    Naveen NR; Girirajasekhar D; Goudanavar PS; Kumar CB; Narasimha GL
    Curr Drug Targets; 2022; 23(13):1239-1251. PubMed ID: 35379132
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recent Advances of Microfluidic Platforms for Controlled Drug Delivery in Nanomedicine.
    Ejeta F
    Drug Des Devel Ther; 2021; 15():3881-3891. PubMed ID: 34531650
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microfluidics in High-Throughput Drug Screening: Organ-on-a-Chip and
    Yoon S; Kilicarslan You D; Jeong U; Lee M; Kim E; Jeon TJ; Kim SM
    Biosensors (Basel); 2024 Jan; 14(1):. PubMed ID: 38275308
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Wearable Flexible Perspiration Biosensors Using Laser-Induced Graphene and Polymeric Tape Microfluidics.
    Garland NT; Schmieder J; Johnson ZT; Hjort RG; Chen B; Andersen C; Sanborn D; Kjeldgaard G; Pola CC; Li J; Gomes C; Smith EA; Angus H; Meyer J; Claussen JC
    ACS Appl Mater Interfaces; 2023 Aug; 15(32):38201-38213. PubMed ID: 37526921
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microfluidics-mediated Liposomal Nanoparticles for Cancer Therapy: Recent Developments on Advanced Devices and Technologies.
    Naghib SM; Mohammad-Jafari K
    Curr Top Med Chem; 2024; 24(14):1185-1211. PubMed ID: 38424436
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microfluidic devices for the detection of disease-specific proteins and other macromolecules, disease modelling and drug development: A review.
    Amir S; Arathi A; Reshma S; Mohanan PV
    Int J Biol Macromol; 2023 Apr; 235():123784. PubMed ID: 36822284
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Artificial intelligence-powered microfluidics for nanomedicine and materials synthesis.
    Liu L; Bi M; Wang Y; Liu J; Jiang X; Xu Z; Zhang X
    Nanoscale; 2021 Dec; 13(46):19352-19366. PubMed ID: 34812823
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Challenges and opportunities in micro/nanofluidic and lab-on-a-chip.
    Verma N; Pandya A
    Prog Mol Biol Transl Sci; 2022; 186(1):289-302. PubMed ID: 35033289
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Industrial lab-on-a-chip: design, applications and scale-up for drug discovery and delivery.
    Vladisavljević GT; Khalid N; Neves MA; Kuroiwa T; Nakajima M; Uemura K; Ichikawa S; Kobayashi I
    Adv Drug Deliv Rev; 2013 Nov; 65(11-12):1626-63. PubMed ID: 23899864
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fabrication and Applications of Microfluidic Devices: A Review.
    Niculescu AG; Chircov C; Bîrcă AC; Grumezescu AM
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33670545
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microfluidics for adaptation of microorganisms to stress: design and application.
    Zoheir AE; Stolle C; Rabe KS
    Appl Microbiol Biotechnol; 2024 Jan; 108(1):162. PubMed ID: 38252163
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Advances in Integration, Wearable Applications, and Artificial Intelligence of Biomedical Microfluidics Systems.
    Ma X; Guo G; Wu X; Wu Q; Liu F; Zhang H; Shi N; Guan Y
    Micromachines (Basel); 2023 Apr; 14(5):. PubMed ID: 37241596
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recent Progress in Wearable Biosensors: From Healthcare Monitoring to Sports Analytics.
    Ye S; Feng S; Huang L; Bian S
    Biosensors (Basel); 2020 Dec; 10(12):. PubMed ID: 33333888
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microfluidics: a transformational tool for nanomedicine development and production.
    Garg S; Heuck G; Ip S; Ramsay E
    J Drug Target; 2016 Nov; 24(9):821-835. PubMed ID: 27492254
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Current Status and Emerging Trends in Colorectal Cancer Screening and Diagnostics.
    Beniwal SS; Lamo P; Kaushik A; Lorenzo-Villegas DL; Liu Y; MohanaSundaram A
    Biosensors (Basel); 2023 Oct; 13(10):. PubMed ID: 37887119
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Wearable Electrochemical Sensors for the Monitoring and Screening of Drugs.
    Teymourian H; Parrilla M; Sempionatto JR; Montiel NF; Barfidokht A; Van Echelpoel R; De Wael K; Wang J
    ACS Sens; 2020 Sep; 5(9):2679-2700. PubMed ID: 32822166
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.