These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 38428803)

  • 41. Exploring the Microfluidic Production of Biomimetic Hybrid Nanoparticles and Their Pharmaceutical Applications.
    Fondaj D; Arduino I; Lopedota AA; Denora N; Iacobazzi RM
    Pharmaceutics; 2023 Jul; 15(7):. PubMed ID: 37514139
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Droplet microfluidics-based biomedical microcarriers.
    Shao C; Chi J; Shang L; Fan Q; Ye F
    Acta Biomater; 2022 Jan; 138():21-33. PubMed ID: 34718181
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The latest advances in high content screening in microfluidic devices.
    Liu W; Wang J; Qi H; Jiao Q; Wu L; Wang Y; Liang Q
    Expert Opin Drug Discov; 2023 Jul; 18(7):781-795. PubMed ID: 37219918
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Molecularly selective nanoporous membrane-based wearable organic electrochemical device for noninvasive cortisol sensing.
    Parlak O; Keene ST; Marais A; Curto VF; Salleo A
    Sci Adv; 2018 Jul; 4(7):eaar2904. PubMed ID: 30035216
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Microfluidic Systems For Manufacturing of Microparticle-Based Drug-Delivery Systems: Design, Construction, and Operation.
    Yonet-Tanyeri N; Amer M; Balmert SC; Korkmaz E; Falo LD; Little SR
    ACS Biomater Sci Eng; 2022 Jul; 8(7):2864-2877. PubMed ID: 35674145
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Next-Generation Microfluidics for Biomedical Research and Healthcare Applications.
    Deliorman M; Ali DS; Qasaimeh MA
    Biomed Eng Comput Biol; 2023; 14():11795972231214387. PubMed ID: 38033395
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Piezoresistive Conductive Microfluidic Membranes for Low-Cost On-Chip Pressure and Flow Sensing.
    Islam MN; Doria SM; Fu X; Gagnon ZR
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214391
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Lab on a body for biomedical electrochemical sensing applications: The next generation of microfluidic devices.
    Jeerapan I; Moonla C; Thavarungkul P; Kanatharana P
    Prog Mol Biol Transl Sci; 2022; 187(1):249-279. PubMed ID: 35094777
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Automation and Computerization of (Bio)sensing Systems.
    Raju CM; Elpa DP; Urban PL
    ACS Sens; 2024 Mar; 9(3):1033-1048. PubMed ID: 38363106
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Artificial intelligence-driven wearable technologies for neonatal cardiorespiratory monitoring. Part 2: artificial intelligence.
    Sitaula C; Grooby E; Kwok TC; Sharkey D; Marzbanrad F; Malhotra A
    Pediatr Res; 2023 Jan; 93(2):426-436. PubMed ID: 36513806
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Microfluidic-Integrated Multimodal Wearable Hybrid Patch for Wireless and Continuous Physiological Monitoring.
    Zahed MA; Kim DK; Jeong SH; Selim Reza M; Sharifuzzaman M; Pradhan GB; Song H; Asaduzzaman M; Park JY
    ACS Sens; 2023 Aug; 8(8):2960-2974. PubMed ID: 37498214
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Recent Advances in Microfluidics for the Preparation of Drug and Gene Delivery Systems.
    Tomeh MA; Zhao X
    Mol Pharm; 2020 Dec; 17(12):4421-4434. PubMed ID: 33213144
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Microfluidics by Additive Manufacturing for Wearable Biosensors: A Review.
    Padash M; Enz C; Carrara S
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32751404
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Production of nanoparticle drug delivery systems with microfluidics tools.
    Khan IU; Serra CA; Anton N; Vandamme TF
    Expert Opin Drug Deliv; 2015 Apr; 12(4):547-62. PubMed ID: 25345543
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Smart Technologies used as Smart Tools in the Management of Cardiovascular Disease and their Future Perspective.
    Ullah M; Hamayun S; Wahab A; Khan SU; Rehman MU; Haq ZU; Rehman KU; Ullah A; Mehreen A; Awan UA; Qayum M; Naeem M
    Curr Probl Cardiol; 2023 Nov; 48(11):101922. PubMed ID: 37437703
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Microfluidics-assisted conjugation of chitosan-coated polymeric nanoparticles with antibodies: Significance in drug release, uptake, and cytotoxicity in breast cancer cells.
    Escareño N; Hassan N; Kogan MJ; Juárez J; Topete A; Daneri-Navarro A
    J Colloid Interface Sci; 2021 Jun; 591():440-450. PubMed ID: 33631531
    [TBL] [Abstract][Full Text] [Related]  

  • 57. "Connecting worlds - a view on microfluidics for a wider application".
    Fernandes AC; Gernaey KV; Krühne U
    Biotechnol Adv; 2018; 36(4):1341-1366. PubMed ID: 29733891
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Recent Advances in Skin-Interfaced Wearable Sweat Sensors: Opportunities for Equitable Personalized Medicine and Global Health Diagnostics.
    Clark KM; Ray TR
    ACS Sens; 2023 Oct; 8(10):3606-3622. PubMed ID: 37747817
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Microfluidic-Based Platform for the Evaluation of Nanomaterial-Mediated Drug Delivery: From High-Throughput Screening to Dynamic Monitoring.
    Yang Y; Liu S; Geng J
    Curr Pharm Des; 2019; 25(27):2953-2968. PubMed ID: 31362686
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The role of intracochlear drug delivery devices in the management of inner ear disease.
    Ayoob AM; Borenstein JT
    Expert Opin Drug Deliv; 2015 Mar; 12(3):465-79. PubMed ID: 25347140
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.